摘要:在真核生物中,Cyclin依赖性激酶(CDKS)是DNA复制和有丝分裂的必需的,并且在整个细胞周期中,依次激活了不同的CDK-循环蛋白复合物。普遍认为,特定的复合物需要遍历G1中细胞周期的承诺,并分别促进S期和有丝分裂。因此,根据一个流行的模型,几十年来一直占据了领域的流行模型,在细胞周期的每个阶段,针对不同底物的独特CDK – cyclin compleces固有的特定座位生成了事件的正确顺序和时间。但是,编码细胞周期蛋白和CDK的基因敲除的结果不支持此模型。通过许多最近的工作验证的替代性“定量”模型表明,CDK活性的总体水平(具有相反的磷酸酶输入)决定了S期和有丝分裂的时间和顺序。我们通过建议将细胞周期分为离散阶段(G0,G1,S,G2和M)的细分被过时且有问题,从而进一步采用了该模型。相反,我们恢复了细胞周期的“连续性”模型,并提出与定量模型的结合更好地定义了理解细胞周期控制的概念框架。
CD44 是一种细胞表面粘附受体和干细胞生物标志物,最近与慢性代谢疾病有关。CD44 的消融可改善肥胖中的脂肪组织炎症和胰岛素抵抗。在这里,我们研究了人类和小鼠脂肪组织中细胞类型特异性 CD44 的表达,并进一步研究了前脂肪细胞中的 CD44 如何调节脂肪细胞功能。使用 Crispr Cas9 介导的基因缺失和慢病毒介导的基因重新表达,我们发现 CD44 的缺失会促进脂肪细胞分化和脂肪生成,而 CD44 的重新表达会消除这种影响并降低 3T3-L1 细胞中的胰岛素反应和脂联素分泌。从机制上讲,CD44 通过抑制 Pparg 表达来实现这一点。通过定量蛋白质组学分析,我们进一步发现细胞周期调节通路大多因 CD44 的缺失而减少。事实上,CD44 的重新表达适度恢复了参与细胞周期所有阶段的蛋白质的表达。这些数据得到了 CD44 缺陷细胞中前脂肪细胞增殖率增加的进一步支持,而 CD44 的重新表达会削弱这种影响。我们的数据表明,CD44 在调节脂肪生成和脂肪细胞功能方面起着至关重要的作用,可能是通过调节 PPARγ 和细胞周期相关通路实现的。这项研究首次提供了证据,表明在前脂肪细胞中表达的 CD44 在调节主要表达 CD44 的免疫细胞之外的脂肪细胞功能方面起着关键作用。因此,针对(前)脂肪细胞中的 CD44 可能为治疗肥胖相关的代谢并发症提供治疗潜力。
摘要:基因组编辑目前广泛应用于生物医学研究;然而,由于其效率低下和可能的副作用,这种方法在临床上的应用仍然受到限制。此外,纠正导致人类疾病的突变似乎极其重要且有希望。许多提高哺乳动物细胞中同源定向修复介导的突变校正效率的尝试都集中在影响细胞周期上。已知同源定向修复仅发生在细胞周期的晚期 S 和 G2 期,因此研究人员正在寻找安全的方法来用细胞周期这些阶段的细胞丰富细胞培养物。本综述概述了基因组编辑实验(主要使用 Cas9)中影响细胞周期的主要方法,例如使用细胞周期同步剂、有丝分裂原、影响细胞周期依赖性激酶的物质、低温、抑制 p53 等。尽管所有这些方法对细胞周期都有可逆的影响,但仍需谨慎使用,因为细胞在细胞周期停滞期间会积累突变,这可能会导致其恶性转化。
CD44 是一种细胞表面粘附受体和干细胞生物标志物,最近与慢性代谢疾病有关。CD44 的消融可改善肥胖中的脂肪组织炎症和胰岛素抵抗。在这里,我们研究了人类和小鼠脂肪组织中细胞类型特异性 CD44 的表达,并进一步研究了前脂肪细胞中的 CD44 如何调节脂肪细胞功能。使用 Crispr Cas9 介导的基因缺失和慢病毒介导的基因重新表达,我们发现 CD44 的缺失会促进脂肪细胞分化和脂肪生成,而 CD44 的重新表达会消除这种影响并降低 3T3-L1 细胞中的胰岛素反应和脂联素分泌。从机制上讲,CD44 通过抑制 Pparg 表达来实现这一点。通过定量蛋白质组学分析,我们进一步发现细胞周期调节通路大多因 CD44 的缺失而减少。事实上,CD44 的重新表达适度恢复了参与细胞周期所有阶段的蛋白质的表达。这些数据得到了 CD44 缺陷细胞中前脂肪细胞增殖率增加的进一步支持,而 CD44 的重新表达会削弱这种影响。我们的数据表明,CD44 在调节脂肪生成和脂肪细胞功能方面起着至关重要的作用,可能是通过调节 PPARγ 和细胞周期相关通路来实现的。这项研究首次提供了证据,表明在前脂肪细胞中表达的 CD44 在调节主要表达 CD44 的免疫细胞之外的脂肪细胞功能方面起着关键作用。因此,针对(前)脂肪细胞中的 CD44 可能为治疗肥胖相关的代谢并发症提供治疗潜力。
生长停滞和DNA损伤诱导的45(GADD45)蛋白是对遗传毒性/生理胁迫迅速诱导的临界应力传感器,并调节许多细胞功能。即使蛋白质的主要功能是阻止细胞周期,抑制细胞增殖,促进细胞凋亡,并修复DNA损害与身体对身体的损害所造成的损害,但证据表明,GADD45还具有调节先天性和适应性免疫的功能,并在浮膜和自动上扮演更广泛的作用。在这篇综述中,我们关注GADD45在炎症和自身免疫性疾病中的免疫调节作用。首先,我们描述了影响GADD45表达的调节因素。然后,我们在免疫细胞和GADD45介导的临界信号通路上引入了其免疫调节作用。最后,我们讨论了其在各种炎症和自身免疫性疾病中的免疫调节作用。
Benjamin Lacroix、Suzanne Vigneron、Jean Claude Labbé、Lionel Pintard、Corinne Lionne 等人。FAM122A 导致细胞周期蛋白 A/Cdk 活性增加和 PP2A-B55 抑制是关键的有丝分裂诱导事件。EMBO 杂志,2024 年,43 (6),第 993-1014 页。�10.1038/s44318-024-00054-z�。�hal-04751214�
胎儿神经干细胞 (NSC) 在生理上存在于低氧条件下(1% – 5% 的组织 pO 2 ),但通常被转移并维持在 21% pO 2 的大气氧水平(高氧)下以进行体外研究。这些改变的氧条件会导致 NSC 发生适应性变化,从而使体外数据的解释变得复杂。然而,潜在的适应动力学在很大程度上仍然是个谜。在这里,我们研究了短期高氧效应(3% pO 2 中 5 天,随后在 21% pO 2 中 2 天),并与持续高氧效应(21% pO 2 中 7 天)和生理氧对照(3% pO 2 中 7 天)进行了比较。我们利用皮质 NSC 通过流式细胞术和累积 BrdU 掺入测定法来分析细胞周期阶段。在持续高氧条件下培养时,NSC 的细胞增殖严重减少,但短期高氧后没有变化。随后通过流式细胞术进行的细胞周期分析表明,在持续和短期高氧条件下,NSC 明显从 G0/G1 期转向 S 期或 G2/M 期。然而,虽然短期高氧显著缩短了细胞周期,但在持续高氧条件下,细胞周期却增加了。总之,我们的结果证明了生理氧对体外扩增 NSC 的有益作用,并揭示了短期高氧与持续高氧相比的不同作用。
确定有效的治疗策略是改善乳腺癌患者治疗效果的主要挑战。为了全面了解临床相关的抗癌药物如何调节细胞周期进程,我们使用基因工程乳腺癌细胞系来追踪药物引起的细胞数量和细胞周期阶段的变化,以揭示随时间变化的药物特异性细胞周期效应。我们使用线性链技巧 (LCT) 计算模型,该模型可以忠实地捕捉药物引起的动态反应,正确推断药物效应,并重现对特定细胞周期阶段的影响。我们使用 LCT 模型来预测未见药物组合的影响,并在独立的验证实验中证实这些影响。我们综合的实验和建模方法为评估药物反应、预测有效的药物组合和确定最佳药物排序策略开辟了道路。
在神经系统发育过程中,不同类型的神经元和神经胶质是由自我更新神经干细胞(NSC)依次产生的。NSC中基因表达的时间变化被认为调节神经di versity。但是,调节这些时间基因过渡的时机的机制仍然很少理解。果蝇II型NSC,例如人类外部radial胶质神经胶质,分裂为自我更新并产生中间神经祖细胞,扩大和多样化神经元的群体,该神经元的种群神经支配了中央复合体,这是一种脑部的大脑区域。II型NSC在暂时的十几个基因上表达,广泛地分类为早期和晚期基因。一个保守的基因,通过激活ecdysone受体(ECR)表达,七个UP介导了早期至晚期的压缩。然而,决定了ECR表达的时间,因此,尚不清楚基因转变。这项研究提出了细胞周期进程和细胞因子的固有机制是否需要诱导NSC早期脑结构过渡。通过加入释放NSC细胞周期或阻断细胞因子的突变克隆,我们表明这两个过程对于早期到偏移过渡都是必需的。当NSC是细胞周期或抑制了Cyto kinesis时,早期的基因IMP未能下调并持续到旧的NSC中,而晚期因素ECR和Syncrip未能表达出来。此外,我们表明,早期的七个因素不足以
在发布政策中指定了此版本的手稿的重复使用条款和条件。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。有关所有使用条款和更多信息,请参见发布者的网站。