1塔苏乌巴大学生活与环境科学研究生院,日本8日9 2日本杜斯库巴大学生命与环境科学教师 Korea 14 5 Division of Invertebrate Zoology, American Museum of Natural History, New 15 York, USA 16 6 Research Center for Advanced Analysis, National Agriculture and Food 17 Research Organization, Tsukuba, Japan 18 7 RIKEN iTHEMS, Wako, Saitama, Japan 19 8 Graduate School of Agriculture, Kyoto University, Kyoto, Japan 20 9 Department of Biology and Ecology, Faculty of Science, University of Ostrava, 21捷克共和国奥斯特拉瓦22 10计算科学中心,日本杜斯库巴大学23 24 *信函的作者:marek.elias@osu.cz(M.E.),25
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年12月5日发布。 https://doi.org/10.1101/2023.12.05.569925 doi:Biorxiv Preprint
转化和生物学,但现在已扩展到基于纳米材料(NM)载体的使用。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。 13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。 尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。 在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。 然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。 我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。 尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。
1 2 Massive invasion of organellar DNA drives nuclear genome evolution in 3 Toxoplasma 4 5 Sivaranjani Namasivayam a,1 , Cheng Sun b,1 Assiatu B Bah c , Jenna Oberstaller d , Edwin Pierre- 6 Louis e , Ronald Drew Etheridge e , Cedric Feschotte f , Ellen J. Pritham c,2 and Jessica C.基辛格G,2 7 8 A遗传学系,佐治亚大学,乔治亚州雅典30602,美国;目前的地址:9临床微生物组,宿主免疫和微生物组实验室,NIAID,NIH,BETHESDA,10 MD 20892,美国11 12 B得克萨斯大学阿灵顿分校的生物学系,美国德克萨斯州阿灵顿,美国德克萨斯州76019;目前13地址:中国北京100048的生命科学学院14 15 C生物学系,德克萨斯大学阿灵顿分校,德克萨斯州阿灵顿,德克萨斯州76019 16 17 D遗传学系,乔治亚州乔治亚大学,乔治亚州乔治亚州乔治亚州大学,乔治亚州30602,美国;现在的地址:18佛罗里达州南佛罗里达大学全球卫生部,佛罗里达州坦帕市,33620,美国19 20 E蜂窝生物学系,热带和新兴全球疾病中心,21乔治亚大学,乔治亚州21号大学,雅典,乔治亚州30602,美国22 23 2 23 2 23 F德克萨斯州阿林顿,Arlington,TX 76019;目前的地址:24分子生物学和遗传学系,康奈尔大学,纽约州伊萨尔大学,纽约州14853-2703,美国25 26 G遗传学系,生物信息学研究所,热带和新兴全球27疾病中心,乔治大学,乔治大学,雅典,雅典,雅典,雅典,GA 30602,USA 28 29 29 1 S.N.38 39竞争利益声明:作者声明没有竞争利益。和C.S对这项工作也同样贡献30 2应向其通信31 32 33电子邮件:jkissing@uga.edu 34 35作者贡献:EJP,JCK和CF设计和监督研究; SN,CS,AB,36 JO,EPL和RDE进行了研究; SN,CS,EJP,JCK和RLP分析了数据; SN,CS,37 CF,JCK和EJP撰写了论文。40 41 42关键字:线粒体DNA的核整合体 - 数字,塑料DNA的核整合体43- nupts,nupts,Organlar Stumelar的核DNA -Nuot,Apicomplexa,Coccidia,Coccidia,Coccidia,非态态44最终连接修复 - NHEJ 45 46 This Prabele -47 46 Text 47 47 47 47:47 47:47 48:47 48:47 48:47 48:47 48:47 48。
无机磷酸盐(P I)是生命的必需分子之一。然而,对动物组织中的细胞内P I代谢和信号传导知之甚少。在观察到慢性P I饥饿会导致果蝇的消化性上皮中引起过度增殖,我们确定P I饥饿会触发P I Transporter PXO的下调。与P I饥饿一致,PXO缺乏引起中肠过增高。有趣的是,免疫染色和超微结构分析表明,PXO特异性标记了非典型的多层细胞器(PXO主体)。此外,通过使用Förster共振能量转移(FRET)P I传感器2进行P i成像,我们发现PXO限制了胞质P I水平。PXO身体需要PXO进行生物发生,并在P I饥饿后发生降解。PXO体的蛋白质组学和脂质组表征揭示了其独特的特征,作为细胞内P I储备。因此,P I饥饿会触发PXO下调和PXO体降解,作为增加胞质P I的补偿机制。最后,我们将激酶的连接器与AP-1(CKA)(CKA)(CKA)和JNK信号3的一个组件(CKA)确定为PXO敲低或P I饥饿诱导的高增殖的介体。总的来说,我们的研究将PXO体作为胞质P I水平的关键调节剂,并鉴定出P i依赖性的PXO – CKA – JNK信号传导控制组织稳态。
这是一篇文章的PDF文件,该文件在接受后经历了增强功能,例如添加了封面和元数据,并为可读性而格式化,但尚未确定记录的确定版本。此版本将在以最终形式发布之前进行其他复制,排版和审查,但是我们正在提供此版本以赋予本文的早期可见性。请注意,在生产过程中,可能会发现可能影响内容的错误,以及适用于期刊的所有法律免责声明。
越来越多的证据表明,细胞可以通过产生具有明确定义的介观性能的无膜室来调节时间和空间的生化功能。该控制的基础基础的一种重要机制是由编码多价相互作用的联想无序蛋白驱动的简单共凝作。受这些观察结果的启发,基于对响应式合成聚合物的简单共凝聚的可编程液滴,这些聚合物模仿了生物无序蛋白的“贴纸和间隔者”结构。zwitterionic聚合物,并形成液滴,这些液滴明显地排除了大多数分子。从该参考材料开始,Zwitterionic聚合物中的不同函数组可以从添加添加,以编码越来越多的不同分子间相互作用。这种策略允许独立控制液滴的多个新兴特性,例如刺激反应性,极性,选择性吸收客户分子,融合时间和混杂性。通过利用这种高的可编程性,重现了细胞隔室的模型,并产生能够限制空间中不同分子而没有物理屏障的液滴。此外,这些生物分子分类器也被证明能够定位,分离和使靶分子在复杂的混合物中,在生物序列化和诊断方面开放了吸引力的应用。
研究表明,二烯酮化合物具有肿瘤选择性抗癌活性,与 TP53 的突变状态无关。先前的研究表明,此类化合物引起的细胞死亡与泛素蛋白酶体系统 (UPS) 的抑制有关。在这里,我们通过展示二烯酮化合物 b-AP15 抑制长寿命蛋白质的蛋白酶体降解来扩展先前的研究结果。我们表明,接触 b-AP15 会导致伴侣 VCP/p97/Cdc48 和 BAG6 与蛋白酶体的结合增加。将 b-AP15 产生的基因表达谱与 siRNA 引起的基因表达谱进行比较,表明蛋白酶体相关去泛素酶 (DUB) USP14 的敲低与药物反应最密切相关。 USP14 是 b-AP15 的一个已验证靶标,我们表明 b-AP15 与酶泛素结合口袋中的两个半胱氨酸 Cys203 和 Cys257 共价结合。与此一致,删除 USP14 会导致对 b-AP15 的敏感性降低。然而,发现靶向 USP14 并不能完全解释观察到的蛋白酶体抑制。为了寻找其他靶标,我们利用全基因组 CRISPR/Cas9 文库筛选和蛋白质组整体溶解度改变 (PISA) 分别识别机制必需基因和 b-AP15 相互作用蛋白。删除编码线粒体蛋白的基因会降低对 b-AP15 的敏感性,这表明线粒体功能障碍与 b-AP15 诱导的细胞死亡有关。使用 PISA 确定了已知参与 II 期解毒的酶,例如醛酮还原酶和谷胱甘肽-S-转移酶,作为 b-AP15 靶标。不同的探索方法产生不同的结果这一发现可以用以下方式解释:
1博士学位科学作家,纽约,纽约。2分子生物学与生物物理学研究所,苏黎世,苏黎世,瑞士。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。 4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。 5比米分子科学系,魏兹曼科学学院,以色列rehovot。 6马萨诸塞州波士顿哈佛医学院的细胞生物学系。 7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。 8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。 9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。 10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。 11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。5比米分子科学系,魏兹曼科学学院,以色列rehovot。6马萨诸塞州波士顿哈佛医学院的细胞生物学系。7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。15 Casma Therapeutics,马萨诸塞州剑桥。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。14国家生物巨星国家实验室,CAS CAS卓越生物大分子中心,生物物理学研究所,中国科学院和生命科学学院,中国中国科学院,北京大学,中国人民共和国。17分子和细胞生物学,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利。18孟加拉大学 - 大学 - 大学 - 大学 - 膜生物学的国家主要实验室,纽约大学生命科学联合中心,生命科学学院,北京北京大学,北京大学。19分子机器和信号传导部,德国马丁斯·麦克斯·普朗克生物化学研究所。20 Amgen,Inc。,千橡树,加利福尼亚州。21医学院和布赫曼分子生命科学学院生物化学研究所II,德国法兰克福歌德大学。22马萨诸塞州波士顿哈佛医学院Blavatnik研究所的细胞生物学系。23分子肿瘤学和早期发现生物化学,加利福尼亚州南旧金山的Genentech,Inc。。24布里斯托尔·迈尔斯·索斯(Bristol Myers Squibb),加利福尼亚州布里斯班。25弗里德里希·米舍(Friedrich Miescher)生物医学研究所,瑞士巴塞尔。26马萨诸塞州剑桥的麻省理工学院和哈佛大学研究所。27马萨诸塞州波士顿的达纳 - 法伯癌研究所医学肿瘤学系。28德国癌症研究中心(DKFZ)和国家肿瘤疾病中心(NCT)的转化医学肿瘤学系,德国海德堡。29生物物理学研究生计划,生物学系和加利福尼亚州斯坦福大学斯坦福大学遗传学系。30 Biohub,加利福尼亚州旧金山。 31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。 32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳30 Biohub,加利福尼亚州旧金山。31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳
1博士学位科学作家,纽约,纽约。2分子生物学与生物物理学研究所,苏黎世,苏黎世,瑞士。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。 4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。 5比米分子科学系,魏兹曼科学学院,以色列rehovot。 6马萨诸塞州波士顿哈佛医学院的细胞生物学系。 7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。 8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。 9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。 10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。 11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。5比米分子科学系,魏兹曼科学学院,以色列rehovot。6马萨诸塞州波士顿哈佛医学院的细胞生物学系。7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。15 Casma Therapeutics,马萨诸塞州剑桥。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。14国家生物巨星国家实验室,CAS CAS卓越生物大分子中心,生物物理学研究所,中国科学院和生命科学学院,中国中国科学院,北京大学,中国人民共和国。17分子和细胞生物学,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利。18孟加拉大学 - 大学 - 大学 - 大学 - 膜生物学的国家主要实验室,纽约大学生命科学联合中心,生命科学学院,北京北京大学,北京大学。19分子机器和信号传导部,德国马丁斯·麦克斯·普朗克生物化学研究所。20 Amgen,Inc。,千橡树,加利福尼亚州。21医学院和布赫曼分子生命科学学院生物化学研究所II,德国法兰克福歌德大学。22马萨诸塞州波士顿哈佛医学院Blavatnik研究所的细胞生物学系。23分子肿瘤学和早期发现生物化学,加利福尼亚州南旧金山的Genentech,Inc。。24布里斯托尔·迈尔斯·索斯(Bristol Myers Squibb),加利福尼亚州布里斯班。25弗里德里希·米舍(Friedrich Miescher)生物医学研究所,瑞士巴塞尔。26马萨诸塞州剑桥的麻省理工学院和哈佛大学研究所。27马萨诸塞州波士顿的达纳 - 法伯癌研究所医学肿瘤学系。28德国癌症研究中心(DKFZ)和国家肿瘤疾病中心(NCT)的转化医学肿瘤学系,德国海德堡。29生物物理学研究生计划,生物学系和加利福尼亚州斯坦福大学斯坦福大学遗传学系。30 Biohub,加利福尼亚州旧金山。 31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。 32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳30 Biohub,加利福尼亚州旧金山。31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳