激活胰岛素受体后,许多细胞质酶,包括有丝分裂原激活的蛋白(MAP)激酶,MAP激酶激酶(MEK)和酪蛋白激酶II(CKII),但精确地激活了胰岛素激酶II(CKII),但胰岛素信号的发展如何仍然是良好的。在过表达人类胰岛素受体[CHO(HIRC)]的中国仓鼠卵巢细胞中,MEK,CKII和MAP激酶ERK I和ERK II可以通过核中的免疫印迹,以及在未刺激状态下的细胞质中检测到。在3T3-F442A脂肪细胞,NIH-3T3细胞和粮农组织肝癌细胞中也观察到MAP激酶的核定位置,而仅在FAO和CHO细胞中的Nucleus中发现了MEK。胰岛素治疗5-30分钟可诱导MEK从细胞质转移到细胞核,而在此期间,MAP激酶和CKII并未将其转移到细胞核中,以响应于胰岛素。然而,在用胰岛素刺激后1-10分钟内,核图激酶和CKII活性在1-10分钟内增加了2-3倍。通过使用凝胶档测定,它具有
摘要:重组蛋白是当今工业生物技术最重要的产物。它们在医学(用于诊断和治疗)、食品和化学工业以及研究中必不可少。植物细胞结合了真核蛋白质生产系统的优点以及细菌生产系统的简单性和有效性。利用植物生产重组蛋白是一个具有经济价值且前景广阔的领域,已成为传统方法的替代方法。本综述讨论了使用核、质体和线粒体基因组表达重组蛋白的植物系统的优势。研究了从获得生产植物的角度来看,修改基因组三个部分的可能性、问题和前景。描述了成功使用核表达平台生产各种生物制药、兽药和技术上重要的蛋白质的例子,以及修改叶绿体基因组后高产量重组蛋白的例子。植物线粒体作为重组蛋白表达系统的潜在用途及其相对于细胞核和叶绿体的优势已得到证实。尽管这些机会尚未得到利用,但植物线粒体作为重组蛋白表达系统的潜在用途及其相对于细胞核和叶绿体的优势已得到证实。
最新类型的疫苗使用病原体的遗传密码作为疫苗;然后利用宿主细胞的装置(包括酶和核糖体)来翻译蛋白质,然后这些蛋白质充当细胞内抗原并刺激免疫反应(van Riel 和 de Wit,2020 年)。这些 DNA 或 RNA 疫苗通常使用脂质外壳来帮助进入细胞,并且可能具有修饰的核苷酸或核苷以延迟宿主细胞机制的降解并调节免疫系统的正确成分(Verbeke 等人,2019 年)。在其中一些疫苗中,基因序列可以编码宿主细胞内的自我复制以产生更多的抗原,从而诱导更强烈的反应。mRNA 是人体的天然成分,不会进入细胞核,完全在细胞质中加工。任何未被细胞吸收的 mRNA 都会被循环核糖核酸酶迅速降解。DNA 疫苗进入细胞核,mRNA 由宿主细胞的 RNA 聚合酶产生。 mRNA 随后进入细胞质并翻译成蛋白质。DNA 疫苗不会整合到宿主细胞 DNA 中,并会通过正常的细胞过程降解。
左图:正常宫颈癌细胞,细胞核结构良好(蓝色),肌动蛋白细丝(绿色)排列整齐,肌动蛋白细丝在细胞存活和分裂中起着至关重要的作用。右图:不稳定的宫颈癌细胞经金化合物处理后,结构完整性受损,细胞核(蓝色)分裂,表明细胞死亡。图片来源:RMIT
细菌DNA中的酥脆/CAS系统有助于这些细菌产生对穿透噬菌体的抗性。RNA目标仪式(例如CRISPR/CAS13)在细胞核中具有强大的功能,以中断这些抗性。,但它们在细胞的胞质中效率低下,在这些细胞的细胞中,许多RNA病毒被复制。在RER博士的指导下,Helmholtz Munich的发展遗传学研究所的科学团队和TUM的发展遗传学主席。nat。Wolfgang Wurst与Helmholtz Munich的Virogie研究所以及TUM和TUM的Tum和Virogie研究所进行了密切合作,已开发了一种解决方案:CAS13D NCS。这种新的分子工具使位于细胞核中的CRISPR-RNA分子可以远足进入Cyto血浆,并在高效的高效中中和RNA病毒(自然2024; doi:10.1038/s41421–00672–1)。研究小组的例证表明,感染SARS-COV-2的细胞的CAS13D NC治疗可防止SARS-COV-2(绿色)在细胞质中的传播。这一进展为开发针对病毒感染的主动防御策略打开了大门。suk
准备攻击黑色素瘤的免疫堡垒:免疫细胞形成异位滤泡状结构,由 B 细胞(CD19-浅灰色)、CD8 T 细胞(CD8a-红色)、CD4 T 细胞(CD4-青色)组成,浸润或位于黑色素瘤肿瘤(S100-黄色)附近。其他标记:泛细胞角蛋白(Pan CK-粉色)和细胞核(蓝色)。
DNA或脱氧核糖核酸是人类和几乎所有其他生物的遗传物质。一个人体内的几乎每个细胞都具有相同的DNA。大多数DNA位于细胞核(称为核DNA)中,但在线粒体中也可以发现少量DNA(其中称为线粒体DNA或mtDNA)。线粒体是细胞内的结构,可将能量从食物转化为细胞可以使用的形式。
样本反卷积方法可估计大量组织样本中的细胞类型比例和基因表达,但它们的性能和生物学应用仍未被探索,特别是在人脑转录组数据中。在这里,使用来自大量组织 RNA 测序 (RNA-seq)、单细胞/细胞核 (sc/sn) RNA-seq 和免疫组织化学的样本匹配数据评估了九种反卷积方法。使用了来自 149 个成人死后大脑和 72 个类器官样本的每个细胞总共 1,130,767 个细胞核。结果显示,dtangle 在估计细胞比例方面表现最佳,而 bMIND 在估计样本细胞类型基因表达方面表现最佳。对于八种脑细胞类型,通过反卷积表达 (decon-eQTL) 鉴定了 25,273 个细胞类型 eQTL。结果表明,decon-eQTL 比单独的块组织或单细胞 eQTL 更能解释精神分裂症 GWAS 遗传性。还使用解卷积数据检查了与阿尔茨海默病、精神分裂症和大脑发育相关的差异基因表达。我们的研究结果在块组织和单细胞数据中得到复制,为解卷积数据在多种脑部疾病中的生物学应用提供了见解。
摘要:分蘖角度是决定禾谷类作物株型和产量的重要性状。在重力刺激下,分蘖角度部分由LAZY1(LA1)蛋白在细胞核和质膜之间的动态重新分配来控制,但其潜在机制尚不清楚。在本研究中,我们基于对水稻(Oryza sativa L.)扩散分蘖突变体la1 G74V的分析,鉴定并描述了LA1的一个新的等位基因,该突变体在该基因预测的跨膜(TM)结构域编码区中发生非同义突变。该突变导致地上部重力性完全丧失,从而导致植物匍匐生长。我们的研究结果表明,LA1不仅定位于细胞核和质膜,而且定位于内质网。去除LA1中的TM结构域会使植物表现出与la1 G74V相似的扩散分蘖表型,但不影响质膜定位;因此,它与玉米中的直系同源物 ZmLA1 有区别。因此,我们认为 TM 结构域对于 LA1 的生物学功能是必不可少的,但该结构域并不决定蛋白质在质膜上的定位。我们的研究为 LA1 介导的地上性调控提供了新的见解。