范可尼贫血 (FA) 是一种使人衰弱的遗传性疾病,具有多种严重症状,包括骨髓衰竭和癌症易感性。CRISPR-Cas 基因组编辑通过利用 DNA 修复来操纵基因型,并已被提议作为 FA 的潜在治疗方法。但 FA 是由 DNA 修复本身的缺陷引起的,从而阻止使用同源定向修复等编辑策略。最近开发的碱基编辑 (BE) 系统不依赖于双链 DNA 断裂,可能用于靶向 FA 基因中的突变,但这仍有待测试。在这里,我们开发了一种概念验证治疗性碱基编辑策略,以解决患者造血干细胞和祖细胞中最常见的两种 FANCA 突变。我们发现,优化腺嘌呤碱基编辑器构建体、载体类型、向导 RNA 格式和递送条件可在多种 FA 患者背景中产生非常有效的基因修饰。优化的碱基编辑恢复了 FANCA 表达、FA 通路的分子功能以及对交联剂的表型抗性。ABE8e 介导的编辑在 FA 患者的原代造血干细胞和祖细胞中既具有基因型有效性,又恢复了 FA 通路功能,表明碱基编辑策略在未来 FA 临床应用中具有潜力。
1医学系,路德维希 - 马克西米利人 - 穆斯蒂蒂蒂尼斯大学慕尼黑,慕尼黑,德国,德国,2个糖尿病学科,内科和肾脏科,内科和肾病学,Eberhard-karls-karls-karls-universitättounty,德国,德国,大学医学中心,大学医院,大学医院,大学医院,univerhard-karls-karls-karls-karls-universit;德国的图宾根,4糖尿病研究和代谢疾病研究所,赫尔姆霍尔兹中心,图宾根大学,图宾根大学,欧宾根大学,5个慈善机构 - 柏林大学医学中心,柏林伯林大学柏林和汉堡大学柏林大学柏林大学医学免疫学研究所,柏林柏林哥伦比亚郡医学院,柏林居民,伯林·伯林(Berlin Institute for Libin)。 Therapies (BCRT), Berlin, Germany, 7 IDM/FMEG Center of the Munich at the University of Tübingen, German Center for Diabetes (DZD), Tübingen, Germany, 8 Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany, 9 Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of医学,LMU慕尼黑,德国慕尼黑的PETTENKOFER公共卫生学院,德国糖尿病研究中心10号,德国Neuherberg,德国
通过检测无细胞DNA(C Q Q QA)和非侵入性产前测试(NIPT)[1,2]的发育来彻底筛选染色体非整倍型的染色体。While over decades, the detection rate (DR) of trisomy 21 could be improved from only 30% to 90% at a false positive rate (FPR) of 5% by first trimester combined screening (FTCS), c ff DNA has a DR of Down syndrome of 99% at a very low FPR of 0.04% [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].三体三体第18和18的DRS与双胞胎妊娠中的C扰性[9、10、11、12]相似。尽管表现出色,但C效应仍然是筛查测试,并且通过侵入性测试确认了高风险C扰动的结果[13,14]。由于其高昂的成本,大多数医疗保健系统并未对所有孕妇进行DNA筛查。因此,已经提出了直接c或偶然筛选的不同模型[15,16,17]。在瑞士,所有孕妇的健康保险提供者都偿还了FTC,包括一名经过认证的超声检查员的详细超声检查,并测量了胎儿颈部半透明(NT)以及生化分析。在超声波中看到的胎儿异常,NT> 95%的胎儿疾病或FTCS≥1:380的任何三体造期风险。自2015年7月以来,作为全球最早的国家之一,斯威茨 - 以偶然的方式实施了常规筛查。如果在FTC上将孕妇年龄(MA)和NT与生化血清标记物β-人类绒毛膜促性腺激素
诱导性多能干细胞 (iPSC) 已成为细胞疗法的革命性工具,因为它们能够分化成各种细胞类型、供应无限,并且具有作为现成细胞产品的潜力。iPSC 衍生免疫细胞的新进展产生了强大的 iNK 和 iT 细胞,它们在动物模型和临床试验中表现出对癌细胞的强大杀伤力。随着先进的基因组编辑技术的出现,高度工程化的细胞得以开发,我们在此概述了 12 种设计 iPSC 的策略,以克服当前基于细胞的免疫疗法的局限性和挑战,包括安全开关、隐形编辑、避免移植物抗宿主病 (GvHD)、靶向、减少淋巴细胞耗竭、有效分化、提高体内持久性、干细胞、代谢适应性、归巢/运输以及克服抑制性肿瘤微环境和基质细胞屏障。随着先进基因组编辑技术的发展,现在可以将较大的 DNA 序列插入精确的基因组位置,而无需 DNA 双链断裂,从而实现多重敲除和插入。这些技术突破使得以前所未有的速度和效率设计复杂的细胞治疗产品成为可能。iPSC 衍生的 iNK、iT 和先进的基因编辑技术的结合提供了新的机遇,并可能为下一代细胞免疫疗法开启新时代。
在原核生物和真核生物中,大多数已鉴定的离子泵 ATPase 属于以下三种结构类型之一。(i)F1Fo ATPase(F 型)存在于线粒体内膜(2)、叶绿体类囊体膜(3)和细菌细胞质膜(4)中。(ii)E1E2 ATPase(P 型)存在于真菌(5)、植物(6)和动物的细胞质膜中[包括 Na',K4-ATPase(7)和 H +,K + -ATPase(8)],以及肌细胞的肌浆网(Ca 2+-ATPase)(9)和细菌细胞质膜(K+-ATPase)(10,11)。 (iii) 已鉴定出第三类 ATPase(V 型),并从真菌和植物液泡(参考文献 12 及其中的参考文献)、包被囊泡(13、14)和嗜铬颗粒(15、16)的膜中部分纯化。正如 Mellman 等人(17)所建议的,我们使用术语“液泡 ATPase”来指代第三类 ATPase。F1Fo ATPase 通常使用 H+ 的电化学梯度(18)或偶尔使用 Na+ 梯度(19)来合成 ATP。这种类型的酶也表现出 ATPase 活性,在某些情况下仅在用蛋白酶活化后才表现出 ATPase 活性(20)。叠氮化物和 N,N'-二环己基碳二酰亚胺可抑制 F1Fo ATPase 的酶活性;寡霉素也可抑制线粒体 ATPase(21)。在 E1E2 ATPases 中,ATP 水解释放的能量与阳离子跨膜转运偶联。酶循环通过构象状态,包括形成磷酸化中间体。酶活性不受叠氮化物或寡霉素的影响,但被钒酸盐特异性抑制,在大多数情况下被 N-乙基马来酰亚胺和异硫氰酸荧光素抑制,而对于 Na4 ,K4-ATPase,则被乌巴因抑制 (5-11)。液泡 ATPases 似乎会水解 ATP,产生质子梯度,用于酸化细胞内区室 (12、17、22)。这组 ATP 酶因其抑制剂特异性而与其他两组 ATP 酶区分开来。液泡 ATPase 不受叠氮化物、寡霉素、钒酸盐或乌巴因的抑制。相反,
摘要:成年人的心脏无法在组织损伤后恢复完全心脏功能,这使心脏再生成为当前的临床未满足需求。有许多临床程序旨在减少受伤后缺血损伤;但是,尚无刺激成年心肌细胞恢复和增殖的可能性。多能干细胞技术和3D培养系统的出现彻底改变了领域。特别是3D培养系统通过获得更准确的人类微环境条件来在体外建模疾病和/或药物相互作用,从而增强了精度医学。在这项研究中,我们涵盖了基于干细胞的心脏再生医学的当前进展和局限性。特别是,我们讨论了基于干细胞的技术和正在进行的临床试验的临床实施和局限性。然后,我们解决了3D培养系统的出现,以产生心脏类细胞器,以更好地代表人类心脏的微环境,用于疾病建模和遗传筛查。最后,我们深入研究了从心脏器官中与心脏再生有关的见解,并进一步讨论了对临床翻译的影响。
脱碳复杂的工业能源系统是减轻气候变化的重要步骤。设计此类部门耦合的工业能源系统向低碳设计的过渡非常具有挑战性,因为在系统设计中,必须考虑成本效益的操作和整个生命周期中环境影响的减少。可以使用软件来确定最佳系统设计:最近,引入了开源框架SECMOD,以通过完全整合生命周期评估来考虑环境影响,以实现多能系统模型的线性优化。在这项工作中,我们扩展了SECMOD,以允许综合决策对于建模工业能源系统至关重要。因此,我们提供了第一个开源的混合企业线性程序框架,并完整地集成了生命周期评估。我们使用secmod来研究扇区耦合的工业能源系统中抽水热量的储能系统的好处,并通过比较经济和气候最佳限度来确定有关系统设计的权衡。
x ia at jie wy 1.2.3,#,r a l a l a l a l a l a l a l a l a l a 1.2.3,ann e Q. ph a 4,kusuk e y a s a g a g a g a g a g a a g a g a g a g a g a g a g a g a g a g a a s i i i i s ica l. f,sh,sh,sh a g 1.6,赢得了OH 7.8,shoq。 j 9. 9.10,soh ail j a d 5,chi eu n 1.2.2.11.12,trum a n k t nguy n 1.2,h和d udup 1.2,n 1.2,n 1.2,n ith shu udup sh and n ith shu udup sh and g r 1.2.13,r i z h 1,2.3,r i z h 1,2.3,k e v n H. Nobuh,nobuh至15 15,v a e s ss a M. s cfon e 2,gu a s a s a 2,k a a s a s a s a s a s a s a s a s a s a s a s a s a s a s a s a s ar,x oy是2。在n F. 1.6,Zh e,e,3.3.6.6.9,1.3.3.6.6.9,t a a a a a a a e eSco 4,a nd K. g a s a s a s a s a s a s a s a s a s a s a s s a s s a s s a s a s a s a s a s a s a s a s a s a s a s a s a s a s a s a s a s,j i 14.25,m a x m a x m a x m v。
在克鲁兹锥虫感染期间,巨噬细胞吞噬寄生虫,并通过肿瘤细胞增多症去除凋亡细胞。巨噬细胞1(M1)会产生促弹性细胞因子和NO和Figts感染,而M2巨噬细胞是表达精氨酸酶1并在组织修复中起作用的允许性宿主细胞。M1和M2表型的调节可能会诱导或损害巨噬细胞介导的免疫力,以控制寄生虫的控制或持续性。在这里,我们重点介绍了巨噬细胞激活在对克鲁齐的早期免疫反应中的关键作用,该反应可防止急性感染期间的寄生虫,心脏寄生虫和死亡率升级。我们将讨论巨噬细胞激活和失活的机制,例如T细胞因子和胚细胞增多症,以及如何改善巨噬细胞介导的免疫力以防止寄生虫持久性,影响,炎症,以及Chagasic心肌疗法的发展。潜在的疫苗或治疗必须增强早期的T细胞巨噬细胞串扰和寄生虫控制,以限制寄生虫引起的心脏中炎症的致病结果。
肠神经胶质细胞(EGC)是肠神经系统(ENS)的重要组成部分,在胃肠道发育,稳态和疾病中起关键作用。经历了由各种信号通路调节的复杂分化过程。是消化系统最动态的细胞之一,EGC对其周围微环境中的提示反应,并与肠内各种细胞类型和系统进行通信。形态学研究和最近的单细胞RNA测序研究已经在EGC种群中揭示了异质性,对区域功能和在疾病中的作用有影响。在胃肠道疾病中,包括炎症性肠道疾病(IBD),感染和癌症,EGCS调节神经可塑性,免疫反应和肿瘤发生。最近的证据表明,EGC对微环境提示做出塑料反应,适应其表型和在疾病状态中的功能并扮演至关重要的作用。它们表现出分子异常并改变与其他肠细胞类型的通讯,强调了其治疗潜力作为靶标。本综述探讨了EGC的多方面角色,特别是强调了它们与肠道中各种细胞类型的相互作用,以及它们对胃肠道疾病的重要贡献。了解EGC在胃肠道生理和病理学中的复杂作用对于发展胃肠道疾病的新型治疗策略至关重要。
