永生化细胞系对研究人员来说非常宝贵,因为它们可以无限增殖,从而可以培养多代。与寿命有限的原代细胞不同,永生化细胞系(也称为连续细胞系)可以避免伦理问题、提取困难、传代能力有限以及由于细胞来源不同而导致的结果不一致等挑战。实验室条件下的大多数细胞都面临海弗利克极限,即端粒随着每次分裂而缩短,导致衰老。永生化细胞系克服了这些限制,可以进行稳定的长期研究,同时无需重复分离和培养细胞,从而节省了研究的时间和资源。连续细胞系可以在体外无限增殖,为广泛的研究目的提供可持续和可重复的系统。这些细胞系为在细胞和分子水平上研究生物体提供了一个独特的平台,提供了全生物模型并不总是能够提供的见解。它复制了宿主的细胞和遗传同质性,同时最大限度地减少了体内系统固有的变异性。因此,人们越来越关注开发新的细胞系以支持更广泛的生物学研究。
基础编辑者是一类有希望的下一代基因组编辑技术,具有精确纠正引起疾病的遗传变异的潜力,并同时安全地敲除多个基因靶标。在一种配置中,PIN点碱基编辑平台是DNA结合Cas的模块化组件和DNA修饰的脱氨酶成分,通过在序列靶向指导指南RNA(GRNA)中编码的适体相关的Deaminase组件。通常,基本编辑器在应用中的应用中,可以准确地预测CAS和脱氨酶组合的目标序列的编辑效率和特异性。PIN点底座编辑系统的模块化允许创建大量配置,它们的PAM特异性,序列编辑偏好和编辑效率可能会有所不同。为了促进和加速基于PIN点平台的应用程序的开发,我们创建了一种定制工具来设计GRNA,以针对感兴趣的基因并安装基本转换,包括那些将引入早产停止密码子或破坏剪接站点以敲除目标基因的基础转换。此外,我们进行了一个大规模的平行细胞屏幕,以分析两个不同的针对点基本编辑器配置的编辑活性,其GRNA针对数千个目标序列。我们使用从屏幕获得的数据来构造每种配置的观察到的编辑结果模型。我们将这些模型应用于旨在产生多个临床上相关基因靶标的功能敲除(包括CIITA和PCSK9)的功能敲除。分析了IN硅预测与GRNA基于细胞的性能的相关性后,我们确认该模型预测与Pin-Point Base编辑平台观察到的编辑效率相关。自定义GRNA设计工具和预测模型的组合导致了一种新型,高效的GRNA来识别能够通过破坏剪接站点来敲除PCSK9的识别,我们证实了文献中先前报道的其他GRNA设计的预测性能。使用我们基于细胞的广泛性能数据集告知我们的GRNA设计规则,创建可靠的自定义工具来优先考虑GRNA并选择具有高编辑效率的人。
摘要。背景/目标:甲状腺塑性甲状腺癌(ATC)的预后很差,目前尚无既定治疗方法来改善其结果。我们先前报道说,Zeste同源2(EZH2)的增强子在ATC中高度表达,并且可能是治疗靶标。但是,EZH2对ATC增长的影响目前尚不清楚。材料和方法:我们研究了EZH2抑制剂(DZNEP)对四种ATC细胞系(8305C,KTA1,TTA1和TTA2)的影响。我们对所有ATC细胞系进行了基因面板分析,以识别细胞系之间DZNEP敏感性的差异。为了研究DZNEP对分化恢复的影响,我们评估了使用PCR进行DZNEP处理之前和之后甲状腺分化标记(TDM)的变化。结果:EZH2在所有ATC细胞系中均表示。在所有ATC细胞系中都检测到DZNEP的细胞还原作用,并且在KTA1细胞中最强,然后是TTA2细胞。TTA1和8305C细胞系显示了弱细胞减少作用,具有TP53突变。在任何ATC细胞系中均未观察到TDM的变化。结论:EZH2抑制剂DZNEP对ATC细胞的生长产生了抑制作用
研究干预措施的效果:研究人员可以使用 PCOS 细胞系研究各种治疗方法(如药物或生活方式改变)对与该疾病相关的分子通路的影响。这有助于确定不同干预措施的有效性,并指导开发更有针对性的治疗方法。 研究治疗目标:通过了解 PCOS 背后的分子机制,研究人员可以确定治疗干预的具体目标,如胰岛素抵抗、炎症和氧化应激。开发针对这些因素的治疗方法可能会更有效地管理该疾病。 个性化医疗方法:PCOS 细胞系可用于研究患有该疾病的个体之间的遗传和分子差异,这可能有助于识别预测个体对某些治疗反应的特定生物标志物。这些信息有助于制定个性化治疗计划,以满足每位患者的独特需求。
Geneva Campia a, Manuel Beltrán-Visiedo A, Ruth Soler-Agest A, B, Ai Sato A, Norma Bloy A, Lewei Zhao C, D, Peng Liu C, D, Oliver Kepp C, D, Guido Kroemer C, D, E, Lorenzo Galluzzi A, F, G, *, and Claudia Galassi A, * Oncology, Weill Cornell Medical College, New York, NY, United States B University of Zaragoza/Arago´n Health Research Institute, Biochemistry and Molecular and Cell Biology, Zaragoza, Spain C Equipe Labellis Ee Par La Ligue Contre Le Cancer, University and De Paris, Sorbonne Universit and, Centro de Recheche des Cordeliers,法国大学,法国,法国,D代谢组学和细胞生物学平台,Gustave Roussy,University and Paris Saclay,Villejuif,France和P ^ ole de Biologie,H ^ Opital europe Europe Europe Europe Euroge Een Georges een Georges een Georges Pompidou,Pompidou Caryl and Israel Englander Precision Medicinate,纽约,纽约州,美国 * Corpsontding作者:电子邮件地址:Deadoc80 @ gmail.com; clg4005 @ med.cornell.edu
©作者2024。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。
我们对60种人类衍生的乳腺癌细胞系模型进行了定量蛋白质组学,深度为约13,000个蛋白质。评估了由此产生的高通量数据集的质量和可重复性。我们使用数据集来识别和表征乳腺癌的亚型,并表明它们符合已知的转录亚型,揭示了即使在采样不足的蛋白质特征集中也保留了分子亚型。所有数据集都可以作为Lincs Portal上的公共资源免费提供。我们预计,可以挖掘这些数据集,无论是孤立还是与免费测量,例如基因组学,转录组学和磷蛋白质组学,以预测药物反应,为信号传导途径模型中的细胞系特定环境提供信息,并识别对治疗疗法的敏感性或抗性的标记。
cryopreserva on Rododuc ve材料和细胞系:背景,好处和挑战,该陈述提出了在技术上使用冷冻液和细胞材料样品的挑战和用途。应与“术语词汇表”和“关于使用冷冻保存材料和生物技术的陈述”的“ cryopreserva”和“ eaza posi”进行阅读。背景冷冻库或冷冻库旨在保留体内的完整或活细胞,以及重现材料(种质)和体外开发的细胞系,以实现未来的复兴和使用。这是通过HAL NG代谢过程通过特定的,MUL - 步骤冷却,冻结和存储方案来完成的,这些方案可能会在样本类型和物种之间变化。样品在-196°C的温度下存储,并且使用液氮(通常在LN2蒸气相)实现此超低温度。对诸如种质(卵母细胞/卵子或精子)等材料的质量,胚胎,以及卵巢或卵巢或tes cular ssue的胚胎可能是人口管理的有用工具,并且可以通过维持基因的ex nc的威胁或偶数造成的基因的威胁而成为管理中极为有价值的物种,甚至可能是基因的威胁。对于诸如EAZA EXAIT计划(EEP)之类的管理计划中的Popula,它具有大量成功的机会,尤其是当他们具有需要长期持久性的角色时(例如保险popula)。此外,它可以允许建立重要的保护角色的ADDI ONAL EEP,如果没有基因C材料供将来使用的基因C材料,目前可能不可行。常见的,公认的辅助再现技术,这些技术是含有冷冻保存的再现材料,例如(ai)上的(AI)上的Ar-firial interemina in(IVF)和胚胎转移(ET)(Prieto et.Al.,2014)。细胞系是建立的细胞培养物,当提供适当的环境和生长培养基时,可以无限地扩散。以保持其细胞活力的方式保存或冷冻时,可以将它们解冻并用于研究目的。这消除了恒定维持生命的复制细胞的需求。应用并使用了各种技术,用于使用冷冻保存的材料,其中一些技术已经建立了良好,更常用,还有其他最新的开发可用。尽管新技术是新的可能性,但它们的使用需要与对任何可能有害后果的担忧保持平衡。eaza均不认可所有应用程序和使用(在任何情况下),正如“ eaza posi有关使用冷冻保存材料和生物技术的说明”中概述的。辅助再现技术
计算模型已成功预测癌细胞系数据中的药物敏感性,为指导精准医疗创造了机会。然而,将这些模型转化为肿瘤仍然具有挑战性。我们提出了一种新的迁移学习工作流程,该工作流程基于源自基因组特征的分子通路,将药物敏感性预测模型从大规模癌细胞系转移到肿瘤和患者来源的异种移植。我们进一步计算特征重要性以确定对药物反应预测最重要的途径。我们在肿瘤(AUROC = 0.77)和三阴性乳腺癌患者来源的异种移植(RMSE = 0.11)上获得了良好的表现。利用特征重要性,我们强调了 ER-Golgi 运输通路与乳腺癌患者依维莫司敏感性之间的关联以及 II 类组蛋白去乙酰化酶和白细胞介素-12 在三阴性乳腺癌药物反应中的作用。通路信息支持将药物反应预测模型从细胞系转移到肿瘤,并可以提供预测背后的生物学解释,作为临床环境使用的垫脚石。
摘要 基于诱导性多能干细胞 (iPSC) 的细胞治疗应用看起来前景广阔,但同时也充满挑战。良好生产规范 (GMP) 法规在制造 iPSC 及其分化后代时对质量和一致性提出了必要但苛刻的要求。鉴于可用的 GMP iPSC 系稀缺,我们建立了相应的生产工作流程来生成第一组合规细胞库。因此,这些细胞系满足了一套全面的发布规范,例如,显示出较低的总体突变负荷,反映了它们的新生儿来源脐带血。基于这些 iPSC 系,我们还开发了一套与 GMP 兼容的工作流程,能够以大大提高的效率改进基因靶向并定向分化为关键细胞类型:一种用于生成视网膜色素上皮 (RPE) 的新方案具有高度的简单性和效率。源自 iPSC 的间充质基质细胞 (MSC) 表现出出色的扩增能力。完全优化的心肌细胞分化方案的特点是纯度高于 95% 时批次间一致性特别高。最后,我们介绍了一种通用免疫细胞诱导平台,可将 iPSC 转化为多能前体细胞。这些造血前体细胞可以选择性地被刺激成为巨噬细胞、T 细胞或自然杀伤 (NK) 细胞。NK 细胞分化后培养条件的转变会诱导数千倍的扩增,这为以不依赖饲养细胞的方法扩大这种关键细胞类型开辟了前景。综上所述,这些细胞系和改进的操作平台将在细胞治疗和基础研究中具有广泛的用途。