1 墨西哥特拉尔潘萨尔瓦多祖比兰医学科学与营养研究所 Guillermo Soberon Acevedo 生物化学部,2 墨西哥国立自治大学生物科学研究生。科皮尔科大学,科约阿坎,墨西哥,3 基因组学实验室,国家癌症研究所,特拉尔潘,墨西哥,4 造血和白血病实验室,细胞分化和癌症研究中心,萨拉戈萨高等研究学院,墨西哥国立自治大学,伊斯塔帕拉帕,墨西哥,5 CNC - 神经科学和细胞生物学中心,CIBB - 创新生物医学和生物技术中心,科英布拉大学,科英布拉,葡萄牙,6 功能基因组学实验室,生物医学部,FES-IZTACALA,墨西哥国立自治大学,特拉尔内潘特拉,墨西哥
研究干预措施的效果:研究人员可以使用 PCOS 细胞系研究各种治疗方法(如药物或生活方式改变)对与该疾病相关的分子通路的影响。这有助于确定不同干预措施的有效性,并指导开发更有针对性的治疗方法。 研究治疗目标:通过了解 PCOS 背后的分子机制,研究人员可以确定治疗干预的具体目标,如胰岛素抵抗、炎症和氧化应激。开发针对这些因素的治疗方法可能会更有效地管理该疾病。 个性化医疗方法:PCOS 细胞系可用于研究患有该疾病的个体之间的遗传和分子差异,这可能有助于识别预测个体对某些治疗反应的特定生物标志物。这些信息有助于制定个性化治疗计划,以满足每位患者的独特需求。
贝伐单抗和西妥昔单抗等单克隆抗体彻底改变了靶向免疫疗法,并在治疗肺癌和肝细胞癌方面显示出良好的效果。然而,观察到了一系列副作用,这促使人们开发出在保持其疗效的同时尽量减少 mAb 副作用的方法。蜂毒素是 BV 的主要成分,最近有人提出将其作为一种有前途的天然产物,与免疫疗法联合使用以降低所用的有效剂量。在这里,我们研究了蜂毒素与贝伐单抗和西妥昔单抗联合使用对降低这些 mAb 治疗剂量的影响。我们测量了贝伐单抗和西妥昔单抗单独使用或与蜂毒素联合使用对肺癌和肝细胞癌细胞系(分别为 A549 和 HepG2)的影响。我们的结果表明,当任一药物与蜂毒素联合使用时,贝伐单抗和西妥昔单抗在 A549 和 HepG2 癌细胞系中的细胞毒性增强,这是通过 MTT 测定的组合指数计算得出的。这些结果通过组织病理学检查和流式细胞术凋亡分析得到证实。从机制上讲,RT ‑ qPCR 表明这种协同作用与 CASPASE3、Bcl2、VEGFR2 和 EGFR 基因表达的显著变化有关。我们的研究结果表明,将蜂毒素与贝伐单抗和西妥昔单抗联合使用可增强其对癌细胞系的有效性。
摘要。髓母细胞瘤(MB)是儿童中最常见的恶性脑肿瘤。MB的治疗基于组织病理学和分子分层,包括手术干预,通常具有颅骨辐照和辅助化学疗法。不幸的是,这种治疗方法导致高发病率,并且也无法治愈所有患者,大约30%屈服于他们的疾病。具有改善的癌症基因组学和更好的分子表征,MB已分为四个主要亚组,无翅式亚组,Sonic Hedgehog激活,第3组和第4组,每个组由其他子类型组成。最近披露了MB的遗传驱动因素将来可能有助于改善治疗,并以这种方式减少与治疗相关的毒性。在这篇综述中,我们描述了MB亚组的异质性,以及潜在的靶向治疗新选择。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2023 年 2 月 24 日发布了此版本。;https://doi.org/10.1101/2023.02.23.529815 doi:bioRxiv 预印本
计算药物敏感性模型可以识别出在治疗剂量下可能对癌细胞系达到最高疗效的靶向药物成分,从而有可能改善治疗结果。最先进的药物敏感性模型使用回归技术来预测药物对肿瘤细胞系的抑制浓度。这个回归目标与药物敏感性模型的这两个主要目标并不直接一致:我们认为药物敏感性建模应该看作是一个排序问题,其优化标准是量化药物对癌细胞系的抑制能力相对于其对健康细胞的毒性。我们对成熟的药物敏感性回归模型 PaccMann 进行了扩展,该模型采用排序损失,并关注抑制浓度与治疗剂量范围的比率。我们发现,排名扩展显著增强了模型根据体外数据识别针对未见肿瘤细胞谱的最有效抗癌药物的能力。
摘要。表达标记蛋白的稳定细胞系和动物模型是研究细胞和分子行为的重要工具。已经应用了几种分子生物学技术来建立表达标记蛋白的细胞系,并取得了不同程度的成功和效率。在这里,我们应用 CRISPR/Cas9 将标记蛋白敲入内源基因位点的 5'UTR。通过这种 5'UTR 靶向敲入策略,建立了表达 Arl13b-Venus、Reep6-HA 和 EGFP-alpha-tubulin 的稳定细胞系,在抗生素选择的细胞中效率高达 50% 至 80%。敲入蛋白的定位与野生型细胞中内源蛋白的定位相同,并表现出均质表达。此外,从内源启动子敲入的 EGFP-alpha-tubulin 的表达在长期培养中是稳定的。我们进一步证明荧光信号足以进行长时间延时成像。在整个延时成像过程中,荧光信号清晰可见,并显示出特定的亚细胞定位。总之,我们的策略表明 5'UTR 是生成细胞系的合适位点,用于在哺乳动物细胞中稳定表达来自内源位点的标记蛋白。
在患有家族性帕金森病 (PD)、帕金森病性痴呆 (PDD) 和路易体痴呆 (DLB) 的患者中,已发现低密度脂蛋白相关蛋白 10 基因 (LRP10) 中罕见的致病变异 (Quadri et al., 2018)。此外,对携带不同 LRP10 变异的患者的尸检分析显示,脑干、边缘和皮质区域中存在严重的 α-突触核蛋白相关病理负担,表现为路易体 (LB) 和路易体神经突 (LN) (Quadri et al., 2018)。重要的是,功能研究表明,最初发现的 LRP10 致病变异影响 LRP10 转录本表达和稳定性、蛋白质稳定性或蛋白质定位,表明功能丧失 (LoF) 是一种共同的致病机制 (Quadri et al., 2018)。此外,早期使用 LRP10 过表达模型的研究报告称 LRP10 参与细胞内运输途径 (Boucher et al., 2008; Brodeur et al., 2009, 2012; Doray et al., 2008). 尽管有这些数据,但对于内源性 LRP10 在健康和疾病中的功能知之甚少,部分原因是缺乏体外 LRP10 敲除 (KO) 模型。
简单总结:虽然现在已经确定 H3.3K27M 突变与弥漫性中线胶质瘤的肿瘤发生有关,但它在治疗耐药性以及因此导致的致命结果中的作用仍然鲜为人知。在这里,得益于我们在儿童胶质瘤细胞中诱导 H3.3K27M 的模型,我们终于阐明了这一关键问题。因此,我们首次证明 H3.3K27M 可以独立于 TP53 改变而增加细胞的放射抗性能力。此外,由于药物库筛选,我们证明这种突变可以根据细胞环境显著调节这些细胞对不同类别化合物的反应,从而为新的治疗策略铺平了道路。总之,我们的研究结果证明,除了在肿瘤发生中的作用之外,H3.3K27M 突变的存在本身会改变儿童胶质瘤细胞对治疗的反应。
扰动生物学是一种建模定量细胞行为并理解详细疾病机制的有力方法。然而,癌细胞系对扰动的大规模蛋白质反应资源不可用,从而导致临界知识差距。在这里,我们使用逆相蛋白阵列在> 12,000个癌细胞系样品中生成了〜170种药物化合物的〜210个临床相关蛋白的扰动表达谱。我们表明,整合扰动的蛋白质反应信号提供了对耐药性的机理见解,增加了药物敏感性的预测能力,并有助于识别有效的药物组合。我们构建了“蛋白质 - 药物”连接性的系统地图,并为社区使用开发了一个用户友好的数据门户。我们的研究提供了丰富的资源来研究癌细胞的行为和治疗反应的依赖性,从而实现了广泛的生物医学应用。