摘要几份报道表明雌激素的参与参与了特定的大脑功能。此外,在大脑发育的早期阶段表达了雌类受体,这表明雌激素或相关分子可能在特定大脑区域的分化中起启发性作用。缺乏可以研究这些现象的模型系统促使我们开发了表达雌激素受体的神经母细胞瘤细胞系。细胞系以与生理活性兼容的水平表达激素受体。活化的雌激素受体能够阻止细胞的增殖而无需发挥毒性作用。随后的生长停滞,细胞显示神经元样的形态,表达T和突触素蛋白,这是在分化神经元中合成的两种蛋白。 生成的细胞系将为神经衍生细胞中雌激素活性的分子和生化研究提供有价值的模型系统。随后的生长停滞,细胞显示神经元样的形态,表达T和突触素蛋白,这是在分化神经元中合成的两种蛋白。生成的细胞系将为神经衍生细胞中雌激素活性的分子和生化研究提供有价值的模型系统。
CRISPR-Cas9 系统为生物学基础研究和转化研究疾病模型的开发提供了强大的基因编辑工具。本研究的目的是利用包括 CRISPR-Cas9 和生物发光在内的先进技术来生成新的人类细胞系,用作癌症研究中的体外和体内模型。大约 50% 的黑色素瘤患者有 BRAF V600E 突变,并且通常在治疗几个月后对当前的 BRAF 抑制剂产生耐药性。KRAS G13D 是一种与对这些抑制剂的耐药性相关的获得性突变。在这项研究中,CRISPR-Cas9 用于将 KRAS G13D 点突变敲入 A375 恶性黑色素瘤细胞系,该细胞系也含有可靶向的 BRAF V600E 突变。由此产生的 KRAS G13D 突变同源系 A375 已在基因组、转录本和蛋白质生物功能水平上得到验证,在传统的 2D 和 3D 细胞培养中研究时,该突变系对 BRAF 抑制剂达拉非尼和维莫非尼表现出显著的抗性。基于上述体外模型,我们通过将稳定的荧光素酶报告基因引入同源 A375 和 KRAS G13D A375 细胞系,开发了用于活体动物生物发光成像的其他模型。对细胞内的相对和绝对生物发光信号进行了量化,发现发射 4.9 x 10 5 光子/细胞/秒(A375)和 3.5 x 10 5 光子/细胞/秒(KRAS G13D A375)。本研究采用皮下异种移植模型,并使用 Xenogen IVIS™ 成像系统量化体内活体生物发光信号,以将肿瘤生长与荧光素酶表达关联起来。A375-Luc2 和 KRAS G13D A375-Luc2 注射到裸鼠体内后均生长为皮下肿瘤,生物发光水平不断提高。此外,还开发了 5 对人类同源荧光素酶报告细胞系和 18 种人类和小鼠荧光素酶报告细胞系,用于研究各种癌症类型。总之,CRISPR-Cas9 技术和稳定的荧光素酶表达两种技术的结合可以生成同源荧光素酶表达细胞系,这些细胞系是阐明肿瘤发生机制和研究体外和体内药物反应的宝贵工具。
载脂蛋白 B mRNA 编辑酶催化多肽样 (APOBEC) DNA 胞嘧啶脱氨酶 3B (A3B) 是一种 DNA 编辑酶,可诱导多发性骨髓瘤和其他各种癌症的基因组 DNA 突变。APOBEC 家族蛋白高度同源,因此研究癌细胞中 A3B 的生物学尤其困难。为了轻松全面地研究 A3B 在骨髓瘤细胞中的功能,我们使用 CRISPR/Cas9 生成了 A3B 报告细胞,其中包含 3 × FLAG 标签和整合在 A3B 基因末端的 IRES-EGFP 序列。这些报告细胞稳定表达 3xFLAG 标记的 A3B 和报告基因 EGFP,并且这种表达会受到已知刺激物(例如 PMA)的增强。相反,shRNA 敲低 A3B 会降低 EGFP 荧光和 3xFLAG 标记的 A3B 蛋白水平。我们利用这些细胞系筛选了一系列抗癌疗法,并发现大多数常规疗法(如抗代谢药物或放射疗法)会加剧内源性 A3B 表达,但最近的分子靶向疗法(包括硼替佐米、来那度胺和埃罗妥珠单抗)不会加剧内源性 A3B 表达。此外,在用抗代谢药物治疗时,ATM、ATR 和 DNA-PK 的化学抑制会抑制 EGFP 表达。这些结果表明 DNA 损伤通过 ATM、ATR 和 DNA-PK 信号传导触发 A3B 表达。
摘要CRISPR/CAS9系统的使用在过去几年中迅速增长。在这里,描述了在人类非机智的体细胞系(NTHY-ORI)中的单核苷酸多态性的优化,突出了以克服有关递送和脱靶的问题的策略。,我们同时使用慢病毒和化学脂质作为递送剂以及两种创建双链断裂(DSB)的策略。前者通过经典的Cas9核酸酶(标准策略)诱导了DSB,而第二个则采用了修改后的CAS9产生单链破裂(SSB)。使用单链供体寡核苷酸或HR410-PA供体矢量(HR)进行敲门。可以通过将双镍酶系统与HR载体化学转染相结合来获得所需的细胞。此结果可能是由于DSB的类型造成的,这可能主要是由于Blunt(标准策略)和伸出时HR(Double Nickase)时的非同源末端连接而进行的。我们的结果表明,双镍酶适合在永生的NTHY-ORI细胞系中敲门,而标准CRISPR/ CAS9系统适合在/ DEL突变中创建基因敲除基因敲除。
乳腺癌 (BC) 的治疗和相关靶点仍然有限,尤其是三阴性乳腺癌 (TNBC)。我们使用数据非依赖性采集 (DIA) 鉴定了 76 种人类 BC 细胞系的 6091 种蛋白质。将我们的蛋白质组学发现与之前的多组学数据集相结合,我们发现包括蛋白质组学数据可改善药物敏感性预测并提供有关作用机制的见解。随后,我们分析了用 EGFR/AKT/mTOR 抑制剂治疗的九种细胞系(五个 TNBC 和四个非 TNBC)的蛋白质组学变化。在 TNBC 中,EGFR/mTOR 抑制剂治疗后代谢途径失调,而 RNA 修饰和细胞周期途径受到 AKT 抑制剂的影响。这种系统的多组学和对 BC 细胞蛋白质组的深入分析有助于确定潜在治疗靶点的优先级并提供有关 TNBC 适应性耐药性的见解。
M. CB1 拮抗剂 AM281 抑制了 ACPA 的抗增殖作用。流式细胞术和超微结构分析显示早期和晚期细胞凋亡显著,细胞活力降低。纳米免疫测定和代谢组学数据表明,CB1R 介导的促凋亡途径的激活状态,ACPA 抑制 Akt/PI3K 途径、糖酵解、TCA 循环、氨基酸生物合成和尿素循环并激活 JNK 途径。通过液相色谱-质谱 (LC-MS/MS) 测定法测试,ACPA 在 24 小时后失去化学稳定性。通过纳米沉淀法开发了一种新型 ACPA-PCL 纳米颗粒系统并进行了表征。ACPA-PCL 纳米颗粒的缓释也减少了 NSCLC 细胞的增殖。我们的结果表明,低剂量 ACPA 和 ACPA-PCL 纳米粒子系统有机会开发为 NSCLC 患者的新疗法,但需要进一步进行体内研究以验证其抗癌作用。
广泛的治疗曲目已适用于肿瘤学家,包括放射性和化学疗法,小分子和单克隆抗体。但是,药物疗效可以受到使癌细胞逃脱治疗的遗传变化的限制。在这里,我们设计了一个网络工具,可促进癌症中药物敏感性基因组学(GDSC)数据库的数据分析,并在265种认可的化合物上与癌细胞系百科全书中的1001个细胞系(ccle,ccle,cbioportal)中的1001个细胞系有关的大量遗传变化进行了批准。WebTool计算一组遗传改变的耐药性比值比。它提供了分配给细胞信号通路的单个化合物或一组化合物的功效的结果。使用此网络工具,我们复制了已知的遗传驱动因素,并确定了新的候选基因,种系变体,共同享受和药物基因组耐药性和药物重新利用的药物基因组修饰剂。WebTool可用性:https://tools.hornlab.org/gdsc/。
碱基编辑技术能够在哺乳动物细胞的目标基因组位点引入点突变,其效率和精度高于采用 DNA 双链断裂的传统基因组编辑方法,例如锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 CRISPR-Cas9(成簇的规律间隔的短回文重复序列-CRISPR 相关蛋白 9)系统。这可以更省时省资源地生成单核苷酸变异同源细胞系(即基因组序列仅在单个编辑核苷酸处彼此不同的细胞系)。这些单核苷酸变异克隆细胞系是评估遗传变异在天然细胞环境中的功能作用的有力工具。因此,碱基编辑可以在受控实验室环境中促进基因型到表型的研究,可用于基础研究和临床应用。在这里,我们提供优化的协议(包括实验设计、方法和分析)来设计碱基编辑构建体、转染粘附细胞、批量量化碱基编辑效率以及生成单核苷酸变体克隆细胞系。
靶向癌症疗法是化疗的有力替代方法,或可作为化疗的补充。然而,靶向治疗的反应取决于多种因素,包括突变和表达水平,因此很难预测其结果。在这里,我们开发了一个胃癌机制模型来研究西妥昔单抗治疗的反应和耐药因素。该模型捕获了两种具有不同突变模式的胃癌细胞系中的 EGFR、ERK 和 AKT 信号通路。我们使用全面的时间和剂量反应测量选择来训练模型,并提供参数和预测不确定性的评估。我们证明所提出的模型有助于识别细胞系之间的因果差异。此外,我们的研究表明,该模型可以预测对不同扰动(例如敲低和敲除实验)的反应。除其他结果外,该模型还预测了 MET 突变对西妥昔单抗敏感性的影响。这些预测能力使该模型成为评估胃癌信号的基础,并可能成为开发和发现预测生物标志物的基础。
石墨烯是一种多功能材料,在各种领域(例如电子,能量,生物医学和环境)具有出色的应用,其特殊的机械强度,电导率和导电性,透明度和化学稳定性。石墨烯已被广泛用于生物学和医疗环境中。mxene是一种二维(2D)材料,由于其表面终止(氧{-O},氟{-f},氟{-F}和羟基{-oH})和透视金属碳化物或碳化物或硝酸酯,因此对水和电导率具有很强的亲和力。mxene最近引起了广泛的应用和独特属性的极大关注。本研究的重点是石墨烯功能化MXENE的合成和表征。此外,我们研究了其对癌细胞系的细胞毒性作用。使用扫描电子显微镜(SEM),X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)测定法对石墨烯功能化的MXENE进行表征。