我们采用完全自洽的横向分辨 Hartree-Fock 近似,以数值方式处理近宏观样本尺寸的量子霍尔区域中较高朗道能级的电子配置。在低无序性下,我们发现空间分辨的条纹和气泡状电荷密度调制,并展示了它们如何根据填充因子出现。这些边界区域的微观细节决定了将电荷密度调制对齐为条纹或气泡的几何边界条件。使用非平衡网络模型模拟传输,在接近半填充的条纹区域中,注入电流的方向具有明显的各向异性。我们获得的条纹周期为 2.9 个回旋半径。我们的结果提供了对其在强磁场中后果的直观理解,并表明在长度尺度上研究时,整数量子霍尔区域中的许多粒子物理学占主导地位。
自由空间光通信 (FSOC) 也称为光无线通信,它一直是一个备受关注的话题,因为它利用了红外波段的宽广的未授权频谱,而不是已经拥挤的无线电频谱。当今的 FSO 技术能够在几公里的距离上每秒传输几千兆位的数据。事实证明,FSO 是解决连接问题的唯一可能解决方案,无论在何处安装光纤成本过高或困难重重。DOT 邀请印度初创企业/组织/研究和学术机构参与此合作项目,以开发一种 FSO 解决方案,该解决方案能够在至少 5 公里的距离内提供每波长至少 10G 带宽(全双工)。总带宽将取决于使用的波长数量。潜在参与者应具有光通信相关技术的可证明的专业知识,形式为完全或部分原型光学技术,包括但不限于组件/模块/硬件/软件/子系统或其最终产品。合作开发项目的最终成果应是可商业部署的 FSO 解决方案。项目成果将授权给感兴趣的参与者或第三方,可直接或与系统集成商合作进行大规模生产、营销和为最终用户部署。2)项目描述
信用的定义(按照AICTE):每周1小时的讲座(L)= 1学分每周1小时教程(T)每周= 1学分= 1学分每周可实用(P)每周= 0.5学分每周2小时的实用(实验室(LAB)= 1个学分(按AICT)学分(按AICT)为160级学分,该学分的数量是B的,该学分的范围是b。如果学生又获得了20个学分,那么学生将有资格获得B技术学位。这些可以通过各个部门提供的各种荣誉课程来获得。也可以通过MOOC获得上述额外的额外信用。任何通过MOOC完成任何课程的学生都必须提交适当的证书才能获得相应的信用。对于任何其他信息,学生可以联系有关的HOD。
ephaptic耦合描述了大脑电场对单个神经元的直接影响。它与一个神经元对另一个神经元的影响不同(Anastassiou等,2011)。神经元种群的活性会在每个神经元和细胞外空间附近产生电场,因为其树突,somata和轴突中的电流。反过来,这些电场会影响单个神经元及其部位的活性。在微观水平上对脑解剖结构和结构进行详细成像,使我们能够了解电流和电场。超级分辨率成像的进步(Novak等,2013; Hochbaum等,2014),多光子脑成像(Denk和Svoboda,1997)和计算研究揭示了单个神经元对电场的不同电和几何特性的贡献。除了突触和固有电流外,磁场还取决于显微镜pro,例如间隙 - 连接活性和神经元-GLIA相互作用。它们还取决于大规模的特性,例如细胞外组织的不均匀性和灰质的解剖结构(Kotnik等,1997; Gimsa and Wachner,2001; Jeong et al。,2016; Jia等,2016)。知道大脑的解剖结构,可以理解新兴电场的特性。在这里,我们旨在了解相反:领域如何影响单个神经元。电场是否是
摘要:神经工程框架 (Eliasmith & Anderson, 2003) 是一种长期存在的方法,用于实现受低级神经生物学细节约束的高级算法。近年来,这种方法已经得到扩展,以纳入更多生物学细节并应用于新任务。本文将这些正在进行的研究线索汇集在一起,在一个共同的框架中呈现它们。我们扩展了 NEF 的核心原则:(a) 指定模型不同部分中神经元所需的调谐曲线,(b) 定义模型不同部分中神经元所代表的值之间的计算关系,以及 (c) 找到将导致这些计算和调谐曲线的突触连接权重。特别是,我们展示了如何将其扩展为包括复杂的时空调谐曲线,然后应用这种方法来生成大脑中的网格单元、时间单元、路径积分、稀疏表示、概率表示和符号表示的功能计算模型。
所有基于人口样本的估计值都具有一定程度的不确定性,在数值上表示为标准误差(SE)或一个百分比采样误差。标准误差通常用于构建置信区间(CI),将其非正式地解释为真实总体价值以定义的概率驻留的值范围。估计值±1 SE所包含的值范围约为68%的置信区间;同样,估计值±2 SE代表95%的置信度,估计值±3 SE代表99%的置信区间。例如,如果人口估计为1000棵树,有100棵树,则真正人口价值在900到1,100之间的可能性为68%;真正的人口总数为95%的概率在800至1,200棵树之间;和99%的概率真实人口总数为700至1,300(图s1)。SE越小,间隔将达到给定的信心水平越窄。
关于UWI,UWI五个校园中的第一个校园中的第一个始于1948年,始于牙买加的蒙娜娜,作为伦敦大学的一所学院。1961年增加了特立尼达和多巴哥的圣奥古斯丁校园,UWI在1962年获得了完整的大学身份。圣奥古斯丁之后是巴巴多斯Cave Hill的校园(1963年),开放式校园(2008年)和安提瓜和巴布达(Antigua&Barbuda)的五个岛屿校园(2019年)。阅读更多&我们在圣奥古斯丁校园教学的教学,在八个学院内举行 - 工程,食品和农业,人文与教育,法律,医学,科学与技术,社会科学,社会科学和运动。每个教师提供各种本科生和研究生课程。了解更多信息并了解我们访问https://www.uwi.edu/以了解有关UWI的更多信息。有关在圣奥古斯丁校园的更多信息,请访问https://sta.uwi.edu/。今天阅读我们每月出版物UWI的最新校园新闻,并在社交媒体Facebook,Twitter,Instagram,YouTube,LinkedIn上关注我们。
• true north point, or relationship to true north • Scale, generally 1:100 or 1:200 • Position of all existing structures, with floor level & ridge height of main building • Position of existing structures on adjoining land within 3 metres of the boundary, including description, street number, floor level, ridge height, and window levels & locations in the walls closest to the side boundaries • Levels – spot levels & existing contours related to Australian Height Datum (AHD) with bench mark details和所示的水平来源•树木 - 精确的位置,躯干直径(如果大于200mm),高度,差异和物种(如果已知) - 在主题现场以及现场边界3米以内的毗邻土地•现场和理事会步行区域内所有可见的服务,包括雨水坑和雨水坑和雨水坑,水位,水液,下水道,telstra pits等<<<<<<<<<<•具体路径,车辆横梁,遏制位置具有遏制水平的顶部以及遏制插座•具有尺寸的标题边界•所有现有地役权的位置和类型以及包括党墙和普通墙的所有现有地役权和权利•当前的文献证据(第88B节或交易)(88b仪器或交易)与在