型号 3 芯 3 + 3 芯 6 芯 48 Wh 6 芯 72 Wh 3 + 6 芯 48 Wh 3 + 6 芯 72 Wh 集成 6.9 小时 13.9 小时 13.9 小时 20.9 小时 20.9 小时 27.1 小时 独立 6.9 小时 13.9 小时 14.3 小时 21.6 小时 21.2 小时 28.6 小时 * 电池续航时间会因设置、使用情况和其他因素而有很大差异 45W 或 65W 细长尖头交流适配器,45W 或 65W USB Type-C 交流适配器 操作系统 以下其中一种,可按型号配置: • Windows 7 Professional 64,通过 Windows 10 Pro 64 中的降级权限预安装 • Windows 10 Home 64 • Windows 10 Pro 64 有限保修以下服务可根据型号配置: • 1 年维修站维修服务 • 1 年维修站和 2 年系统板维修服务 • 1 年有限现场服务 • 3 年/1 年电池维修站维修服务 • 3 年/1 年电池有限现场服务 军用规格测试 MIL-STD-810G 军用测试 环境 EPEAT 金牌(仅限美国);ENERGY STAR 6.1;符合 RoHS 标准
现代活跃的三角洲被称为“鸟足”。在水道源头——0 英里处——河道分成三部分,形成鸟足形河口,被称为巴利兹三角洲或普拉克明三角洲。就空间范围而言,现代密西西比三角洲并不是地球上最大的三角洲;恒河和湄公河的跨度大约是它的三倍,亚马逊三角洲是它的十六倍。但它可能是世界上最突出的细长、河流主导的三角洲,而不是那些由波浪、潮汐或这三种因素的组合主导的三角洲。当淡水和沉积物流量很大,接收海流缓慢而平静时,三角洲以河流为主,就像墨西哥湾一样。由此形成的是“发育良好的三角洲平原,几条支流以指状“鸟足”形状向海延伸。”密西西比河的鸟足形貌由六个亚三角洲、众多的扇形河段和裂片以及三条主要通道组成:西南通道(50% 的水流和大部分航行活动的路线)、南通道(20%)和洛特尔通道(30%),洛特尔通道又分为北通道和东北通道。
摘要:在本文中,我们描述了抗菌特性的化学合成,初步评估和一组新型脂化衍生物的作用机制,这些衍生物是三种天然α-螺旋α-螺旋抗菌肽的作用,ll-i(ll-i ATRA-1(KRFKKFFKKLK-NH 2)。获得的结果表明,最终化合物的生物学特性均由脂肪酸的长度以及初始肽的结构和物理化学特性来定义。我们将C 8 –C 12的长度视为抗菌活性改善的最佳。然而,最活跃的类似物对角质形成细胞的细胞毒性相对较高,除了ATRA-1衍生物,对微生物细胞具有更高的选择性。ATRA-1衍生物对健康人角质形成细胞的细胞毒性相对较低,但针对人类乳腺癌细胞的细胞毒性高。考虑到ATRA-1类似物具有最高的正净电荷,可以假定此功能有助于细胞选择性。正如预期的那样,研究的脂蛋白肽表现出强烈的趋势,即自组装成纤维和/或细长和球形胶束,具有最少的细胞毒性ATRA-1衍生物,形成较小的组装。研究结果还证实了细菌细胞膜是研究化合物的靶标。
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
燃料电池阳极的抽象修改对于在所需水平上实现有效转化率至关重要。它在此过程中受气体分布的影响。阳极的紧凑型轮廓对于我们作为可靠生产方法的烧结是直接影响,需要进一步修改以解决问题。在这项工作中,进行了实用的解决方案,以维持阳极的有效气体扩散,这是通过增强表面装饰来实现的。该研究使用有机多孔支持(PS)作为一种可持续和AP可容纳方法。有机PS由面粉制成,在烧结过程中蒸发。所产生的阳极的衍射曲线表明结构和物理特征没有实质性变化。形态观察意味着孔形成的各种模型,包括较高的PS比(15 wt%)实现的细长间隙。它促进了最高的渗透率高达0.425 m 2,最大二压差异仅为4.53 kPa。它表明表面修饰的实现是可靠的,可以在整个转换过程中对气体分布进行实质性改善。因此,这项工作的贡献是可以作为可靠方法来改善毛孔形成的。
摘要。图像分割是一项复杂的任务,旨在同时符合各种质量标准。在这种情况下,拓扑越来越被考虑。保证正确的拓扑特性对于对物体的具有挑战性确实至关重要(例如,小,细长,多种形状。在医学成像中尤其如此。设计拓扑感知指标是相关的,既可以评估分割结果的质量又用于设计学习程序所涉及的损失。在本文中,我们介绍了CCDICE(连接的组件骰子),这是一种拓普式的拓扑指标,可概括流行的骰子评分。与骰子相比,该骰子的作用在像素的尺度上,CCDICE的作用在比较对象的相关组件的尺度上起作用,从而导致对其相对结构和嵌入的拓扑评估。CCDICE是一种简单,可解释的,归一化的和低计算的拓扑度量。我们提供了CCDICE的正式定义,CCDICE是一种用于计算它的算法方案,并通过比较其他常规拓扑指标来评估其行为,从而强调了其相关性。代码可在GitHub上找到:https://github.com/pierrerouge/ccdice。
水凝胶基质的粘弹性对3D培养和生物制作组织模型系统的细胞行为敏感。先前的报道表明,在具有明显的压力松弛的水凝胶中,细胞倾向于粘附,扩散,迁移和增殖。然而,目前尚不清楚细胞是否对压力松弛的振幅更为敏感,或者对放松时间常数的反应。为了测试这一点,我们比较了在藻酸盐中最多10天培养的成纤维细胞的行为,并氧化了具有相似杨氏模量的藻酸盐水凝胶,但应力放松行为不同。我们发现成纤维细胞在水凝胶中细长,迁移和增殖更好,这些水凝胶显示出更高的应力松弛幅度。相比之下,细胞对松弛时间常数的响应不太明显且不一致。在一起,这些数据表明,最重要的是基质的应力松弛幅度,该矩阵决定了细胞局部穿透和重塑矩阵的能力,随后会导致更好的扩散,更快的迁移和更高的细胞增殖。我们得出的结论是,应力松弛振幅是用于优化3-D水凝胶中细胞行为的中心设计参数。
ROBERT C. NELSON 在圣母大学获得航空航天工程学士和硕士学位,在宾夕法尼亚州立大学获得航空航天工程博士学位。在加入圣母大学之前,Nelson 博士是宾夕法尼亚州立大学航空航天工程讲师,也是俄亥俄州费尔伯恩赖特帕特森空军基地空军飞行动力学实验室的工程师。在 AFFDL 工作期间,他参与了一项高级开发计划,旨在开发空对空短程轰炸机防御导弹的技术。由于他对这项工作的贡献,他获得了空军系统司令部颁发的技术成就奖。1975 年,Nelson 博士加入圣母大学任教,一直活跃于飞机和导弹的空气动力学和飞行动力学研究。他目前的研究兴趣包括大攻角细长机身的空气动力学、流动可视化技术、三角翼空气动力学以及飞机稳定性和控制。他撰写了 100 多篇有关其研究的文章和论文。Nelson 博士是圣母大学航空航天和机械工程系的系主任。他还积极担任政府和工业组织的顾问。他是一名注册专业工程师,也是美国航空航天学会 (AIAA) 的会员。他曾担任 AIAA 大气飞行力学会议的总主席
细长钢构件的二阶分析可能具有挑战性,尤其是在涉及大挠度的情况下。本文提出了一种基于机器学习的新型结构分析(MLSA)方法,用于对梁柱进行二阶分析,这可能是使用过度简化的分析方程或传统的有限元元素方法的普遍解决方案的有前途的替代方法。常规机器学习方法的有效性在很大程度上取决于所提供数据的定性和定量。但是,在结构工程实践中,这些数据通常很少且昂贵。要解决这个问题,采用了一种新的,可解释的基于机器学习的方法,名为“物理知识的神经网络”(PINN),在该方法中,将利用物理信息来定位学习过程,以创建一个自欺欺人的学习过程,从而可以自我培训,从而可以训练很少甚至没有预性数据集以实现准确的近似值。这项研究将Pinn方法扩展到了钢梁柱的二阶分析问题。给出了管理方程式的详细推导以及培训过程的基本物理信息。提供了Pinn框架和训练程序,其中采用了自适应减肥控制算法和转移学习技术以提高数值效率。可实用性和准确性通过四组验证示例验证。
印度国家水稻研究所(ICAR)早在 1989 年开展系统研究之前就已率先在印度推广杂交水稻技术。自成立以来,研究所取得了令人瞩目的进展,并将三种流行的杂交品种商业化,即 Ajay(125-130 天)、Rajalaxmi(125-130 天;硼肥下 168 天)和 CR Dhan 701(140-145 天),用于灌溉和雨养浅低地生态系统。此外,该研究所还开发了 50 多个稳定的 CMS 系(WA、Kalinga-I 和 O. perennis 等 MS 细胞质)、保持系和 100 多个良好的恢复系,以进一步促进 HR 育种。杂交品种 CR Dhan-701 适合奥里萨邦、比哈尔邦和古吉拉特邦的灌溉和浅洼地地区,在低光照地区也能生长,因此在印度东部各邦具有广阔的发展空间,因为这些地区雨季的低光照限制了杂交品种/品种的潜在表现。中生杂交品种 Rajalaxmi 适合在奥里萨邦的灌溉和浅洼地地区以及阿萨姆邦和奥里萨邦的博罗地区种植。它具有幼苗期耐寒性,因此适合博罗地区。Ajay (CRHR7) 是一种中生杂交品种,结出细长 (LS) 谷粒,已在奥里萨邦的灌溉和浅洼地地区推出。