合成和天然聚合物作为重要的生物材料对多种生物医学和药物领域的极大兴趣。在合成聚合物中,聚(ε-caprolactone)(PCL)聚合物的生物活性特性有利于其在生物医学和药物应用中的应用。该合成聚合物作为多功能平台已在组织工程和医疗植入物中应用于三维脚手架,微生物感染,糖尿病伤口和癌症作为药物微生物和纳米载体。作为主要好处,PCL说明了具有简单修改的成本效益,易于可用性,可用性,生物相容性,生物降解性和机械特征。然而,这种聚合物表现出较差的亲水性和长期降解周期,作为临床局限性,可以通过具有合成和天然生物材料的新型PCL制剂来改善这些局限性。
本综述提供了对肌腱和韧带损伤的全面分析,强调了肌腱衍生的干细胞(TDSC)在组织工程中的关键作用,这是针对这些挑战性医疗状况的潜在解决方案。肌腱和韧带损伤,在运动员,老年人和劳动者中普遍存在,由于这些血管结构的内在愈合能力差而导致长期残疾和生活质量降低。生物力学下疤痕组织的形成和高射击率强调了对增强和指导再生过程的创新方法的必要性。本综述深入研究了肌腱和韧带结构和功能的复杂性,伤害的类型及其影响以及自然修复过程的局限性。特别关注TDSC在组织工程背景下的作用。TDSC,其能力分化为tenocyttes,包括用于细胞跟踪的生物相容性支架,共同培养系统,以优化肌腱骨愈合和移植愈合技术。审查还解决了移植后免疫反应性的挑战,预处理的TDSC的重要性以及水凝胶和脱细胞矩阵在支撑肌腱再生中的潜力。通过强调机械和分子刺激在TDSC分化以及当前领域的挑战中的基本作用,为未来的研究方向铺平了道路。
骨折不愈合是由多种因素引起的,从而导致可能出现严重的骨缺损。虽然自体移植和同种异体移植是目前治疗骨折不愈合的黄金标准,但与可用性和免疫排斥相关的挑战凸显了改进治疗方法的必要性。骨组织工程的一种策略是利用生长因子来诱导细胞改变其表型和行为,并启动信号通路,从而增加基质沉积和组织形成。骨形态发生蛋白-2 (BMP-2) 是一种有效的成骨生长因子,然而,鉴于其在体内的快速清除时间,存在特定的治疗窗口以发挥功效,同时避免潜在的有害副作用。结果表明,在 3D 可打印和生物可吸收的聚己内酯三甲基丙烯酸酯基树脂上涂覆 Laponite 纳米粘土能够结合 BMP-2,降低释放速率,从而能够降低使用浓度,同时在体外和体内模型中增强骨诱导作用。
再生医学是即将到来的医学领域,重点是代替因创伤和疾病过程而损失的组织。它采用组织工程原理来再生组织以恢复形式,功能和美学。在全球许多受影响的人中需要替代丢失的组织,开发一个个性化的,预测的治疗选择是需要小时。三维(3D)生物打印是使用增材制造的一种组织工程方法的一种形式,该形式使用3D成像方式和计算机辅助设计软件在三维生物构图组织和器官中逐层使用多种生物材料以定制和特定的模式划分[1]。这项技术的多功能性,定制和精确性为其与其他基于脚手架的再生方式相比具有优势,这无法模仿复杂组织的复杂结构,生物学和空间分布[2]。它具有生物打印组织和器官的潜力,从而减少了器官移植的指数需求。它也将使体外组织模型的生物打印用于药物分析,从而减少了动物模型测试的需求。此外,使用添加剂制造的3D打印技术比减法制造和常规制造更具环境友好。将主要天然组件用于生物打印应用,使它们更加生物相容性,可生物降解和环境友好。它在制药和医疗保健行业中已广泛使用。随着生物医学和组织工程方法的进步,3D生物打印已成为潜在的灵丹妙药,使3D生物打印组织和器官成为现实。我们现在正处于具有四维(4D)印刷的新制造时代的悬崖上,这也考虑了时间的第四维度。
AI提供了一个强大的DTE工具包,但需要解决某些限制。AI模型的准确性在很大程度上取决于培训数据的质量和数量。需要进一步的研究来创建特定于DTE的大型,标准化的数据集,包括多样化的患者人群和生物材料特征。此外,随着AI更加集成到临床工作流程中,需要解决有关患者数据隐私和AI预测的解释性的道德考虑。将AI整合到DTE中具有改变口服再生场的巨大潜力。通过克服生物材料设计,细胞行为预测和治疗个性化的当前局限性,AI为未来铺平了道路,使患者可以通过个性化的DTE治疗体验新的功能恢复和改善的生活质量。持续的研发工作集中在数据获取,道德考虑和AI模型的解释性上,对于实现DTE中这种强大技术的全部潜力至关重要。
Termis-AM(组织工程和再生医学国际学会)11月9日至12日,2025年,底特律,Mi termis =组织工程和再生医学国际学会https://termis.org/chapter-chapter-meetings/3 ISCT/3 ISCT 2025 2025年5月7日,国际社会及其遗产,国际及2025年5月7日,laean&conterapt https://www.isctglobal.org/events/event-description?calendareventkey=764C04A3-27AA-43B9-9036-018736-018734CD3141 5 TH细胞疗法和免疫疗法和免疫治疗会议(AICHE) https://www.aiche.org/sbe/conferences/cell-therapies-and-mimmmunotheraphy-conference/2024摘要截止日期:7/12/24 BMES(生物医学工程学会)(生物医学工程协会)10月23日,23-26日,2024年Baltimore,MD https:/md https:/ 7/26/24 BMES CMBE(细胞和分子生物工程),“机械医学和恢复的细胞工程” 1月3-6日,CA 2025,CA https://www.bmes.org/cmbe.org/cmbe2025摘要:9/12/24 ASGCT(NEMAN CALLINES),Gene + Genee + Gene + cell + calls.bmes.bmes.org/cmbe.org/cmbe2025 Orleans,La https://www.asgct.org/annual-meeting/future-annual-meetings GRC(戈登研究会议),生物材料和组织工程,20025年7月27日至2025年4月27日,巴塞罗那,西班牙语截止日期:6/29/25 SBE(生物工程学会),转化医学10月27日至28日,2024年,圣地亚哥,CA
临床管道集中于椎间盘退行性疾病(II期),中风,帕金森氏病,年龄相关的黄斑变性(与astellas相关)和其他适应症
我们正在领导医疗保健范式的变化,例如预测,预防,定制药物治疗和新药物开发,旨在使用个人基因组信息,医疗信息和提升(生活方式信息)等健康信息来实现最佳的个性化医学。
此指南文件仅出于评论目的。在宣布指南草案的《联邦公报》通知中提供的日期之前,提交了本指南草案的一组电子或书面评论。将电子评论提交到https://www.regulation.gov/。向码头管理人员(HFA-305)提交书面评论,食品和药物管理局,5630 Fishers Lane,RM。1061,Rockville,MD 20852。您应该确定所有评论,其中包含在联邦登记册上发布的可用性通知书中列出的案卷号。该指南的其他副本可从新罕布什尔大街10903号的传播,外展和开发办公室(OCOD)提供。71,RM。 3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-4709 or 240-402-8010, or email ocod@fda.hhs.gov , or from the Internet at https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-监管信息生物学/生物制剂。 有关此指南内容的问题,请通过上面列出的电话号码或电子邮件地址与OCOD联系。71,RM。3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-4709 or 240-402-8010, or email ocod@fda.hhs.gov , or from the Internet at https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-监管信息生物学/生物制剂。有关此指南内容的问题,请通过上面列出的电话号码或电子邮件地址与OCOD联系。
