e支持性护理考虑经验GCSF支持,如果年龄> 65岁,诊断的细胞质,骨髓受累;如果尚未使用,则应添加GCSF,如果在治疗期间发生感染或热中性粒细胞减少症;抗感染预防:建议使用VZV/HSV;推荐刺激性泻药和抗emetics;考虑疾病负担高,肾功能障碍,快速生长的淋巴瘤患者的肿瘤裂解综合征的住院监测和管理;根据需要使用别嘌醇,静脉液和拉斯伯酶;考虑因穿孔风险,考虑对肠道受累的患者的住院监测;考虑转诊以保护适当和有兴趣的患者的生育能力;化学疗法后建议对肺炎球菌和卷疫疫苗进行免疫接种;转介给注册营养师进行医学营养疗法
摘要雌激素的生物学作用是由雌激素受体α或β(ERα或ERβ)介导的,这些雌激素受体α或β(ERα或ERβ)是广泛的核受体超家族的成员。大量体内和体外研究表明,经典ERα和ERβ调节循环雌激素的丧失导致胰腺β细胞和胰岛功能,GLUT4表达,胰岛素敏感性和葡萄糖耐受性,功能障碍性脂质稳态,氧化抑制作用,氧化性壳体和炎症性壳体的快速变化。非常明显,17β-雌激素(E2)可以完全逆转这些影响。本综述评估了当前对经典ER在临界途径和与胰岛素抵抗和2型糖尿病(T2DM)相关的分子机制中的保护作用的理解。它还研究了更年期激素治疗(MHT)在降低更年期妇女中T2DM的风险方面的有效性。临床试验表明,MHT对葡萄糖代谢的保护作用,这对于治疗中绝经妇女的T2DM可能很有用。但是,人们担心E2在绝经中肥胖和高脂血症的潜在副作用。有必要进行进一步的研究以获得理解并找到绝经后妇女治疗胰岛素抵抗和T2DM的其他雌激素替代方法。
摘要 当前的量子软件开发策略仍然在量子力学本身错综复杂的特性之上表现出复杂性。量子编程语言要么局限于附加到经典对象以生成电路的低级、基于门的操作,要么需要通过代数表示对希尔伯特空间中的量子态变换进行建模。本文介绍了 Quuff 语言,它是一种高级、动态类型的量子经典编程语言。Quuff 编译器和运行时系统通过跨量子经典范式抽象的高级表达来促进量子软件开发。Quuff 构建在 Truffle 框架之上,该框架有助于堆栈的实现和效率,同时重用 JVM 基础架构。所呈现的比较表明,Quuff 本身是一种有效、易于使用的解决方案,可用于开发具有自动电路生成和高效计算功能的可执行量子程序。
量子计算硬件的发展面临着这样的挑战:当今的量子处理器由 50-100 个量子比特组成,其运行范围已经超出了经典计算机的量子模拟范围。在本文中,我们证明,模拟经典极限可以成为一种有效的诊断工具,用于诊断量子信息硬件对混沌不稳定性的影响,从而有可能缓解这一问题。作为我们方法的试验台,我们考虑使用 transmon 量子比特处理器,这是一个计算平台,其中大量非线性量子振荡器的耦合可能会引发不稳定的混沌共振。我们发现,在具有 O(10)个 transmon 的系统中,经典和量子模拟会导致相似的稳定性指标(经典 Lyapunov 指数与量子波函数参与率)。然而,经典模拟的一大优势是它可以应用于包含多达数千个量子比特的大型系统。我们通过模拟所有当前的 IBM transmon 芯片(包括 Osprey 一代的 433 量子比特处理器以及具有 1121 个量子比特的设备(Condor 一代))展示了此经典工具箱的实用性。对于实际的系统参数,我们发现 Lyapunov 指数随系统规模而系统性地增加,这表明更大的布局需要在信息保护方面付出更多努力。
近几十年来,科学家掌握了由单个原子或分子层组成的二维晶体的创建。当这些晶体被轻微的偏移或旋转堆叠时,它们会产生大规模的干扰模式,称为Moiré模式。在这样的莫伊尔材料中,电子状态与莫伊尔图案的周期性一致,而不是原始晶体的周期性,对材料的电子特性产生了深远的影响。扭曲的双层石墨烯(TBG),其中两层石墨烯略有扭曲,是这种现象的主要例子。石墨烯是一种二维晶体,该晶体由排列在蜂蜜梳子晶格中的单层碳原子形成。当以特定的扭曲角度堆叠(称为魔法角度)时,TBG具有显着的特性,包括非常规超导性和低能量处的电子带结构的区别。Tarnopolsky,Kruchkov和Vishwanath [TKV19]引入了TBG的手性连续体模型,该模型通过精确地展示了Bloch-Floquet乐队,从而捕捉了TBG魔法角度的这种基本性质。在[bewz21,bewz22]中显示,由于扭曲角度非常小,几乎每个接近零能量的频段基本上都是为此模型的。在本文中,我们研究了Timmel和Mele [TM20]引入的上述手性模型的类似物,其中Moiré-type结构通过应用物理菌株在一个维度中占据一维。虽然此模型确实
摘要。脑肿瘤是神经系统疾病中的重要威胁,需要准确分类才能有效诊断和治疗。本研究探索了使用经典局部二值模式 (CLBP) 和卷积神经网络 (CNN) 进行脑肿瘤分类,以及使用经典 LBP 和 HOG(方向梯度直方图)从 MRI 图像中提取纹理特征。这些方法能够熟练地捕捉对肿瘤识别至关重要的局部和全局纹理模式。我们提出的框架包括三个关键步骤:图像预处理、通过 CLBP 进行特征提取和利用 CNN 进行分类。对公开的脑肿瘤数据集的评估显示了令人印象深刻的 95.6% 的肿瘤分类准确率,证实了 CLBP+CNN 方法的有效性。该方法对增强临床诊断和治疗计划具有良好的意义。此外,我们提出了未来的扩展,包括 DLBP 和 LBP 等 CLBP。DLBP 引入了一个参数“D”,表示像素距离,而 LBP 则在指定范围内改变像素值。此外,还利用 ANN、AlDE 和 LDA 分类方法探索了肿瘤分类,未来有望将 MRI 图像中的 DLBP、LBP 和 CLBP 提取纳入数据集
在量子纠错中,有几种代码积的概念,例如超图积、同源积、提升积、平衡积等等。在本文中,我们引入了一种新的乘积码构造,它是经典乘积码到量子码的自然推广:从一组组件 Calderbank-Shor-Steane (CSS) 码开始,得到一个更大的 CSS 码,其中 X 奇偶校验和 Z 奇偶校验都与经典乘积码相关。我们从组件码的属性中推导出乘积 CSS 码的几个属性,包括代码距离的界限,并表明奇偶校验中的内置冗余会产生所谓的元校验,可以利用这些元校验来纠正综合读出错误。然后,我们专门研究单奇偶校验 (SPC) 乘积码的情况,在经典领域,这是构造乘积码的常见选择。在擦除信道的最大似然解码器和去极化噪声的信念传播解码下,显示了具有参数 [[512 , 174 , 8]] 的 SPC 3 倍乘积 CSS 代码的逻辑错误率模拟。我们将结果与其他具有可比长度和维度的代码进行比较,包括来自渐近良好 Tanner 代码系列的代码。我们观察到我们的参考乘积 CSS 代码优于所有其他经过检查的代码。
在量子纠错中,有几种代码积的概念,例如超图积、同源积、提升积、平衡积等等。在本文中,我们引入了一种新的乘积码构造,它是经典乘积码到量子码的自然推广:从一组组件 Calderbank-Shor-Steane (CSS) 码开始,得到一个更大的 CSS 码,其中 X 奇偶校验和 Z 奇偶校验都与经典乘积码相关。我们从组件码的属性中推导出乘积 CSS 码的几个属性,包括代码距离的界限,并表明奇偶校验中的内置冗余会产生所谓的元校验,可以利用这些元校验来纠正综合读出错误。然后,我们专门研究单奇偶校验 (SPC) 乘积码的情况,在经典领域,这是构造乘积码的常见选择。在擦除信道的最大似然解码器和去极化噪声的信念传播解码下,显示了具有参数 [[512 , 174 , 8]] 的 SPC 3 倍乘积 CSS 代码的逻辑错误率模拟。我们将结果与其他具有可比长度和维度的代码进行比较,包括来自渐近良好 Tanner 代码系列的代码。我们观察到我们的参考乘积 CSS 代码优于所有其他经过检查的代码。
主办中心(IFT)为博士生提供了非常激励的科学环境,鼓励博士前阶段的发展和利用。目前,该中心拥有数十名博士生,致力于研究基础物理学的各种前沿问题,并处于理论物理工作环境中,每年有大约 200 名国际访问者、10-12 个国际会议和研讨会、国际博士学校和各个基础物理研究领域的国际知名人士举办的众多座谈会。 IFT 还提供了广泛的科学传播机会,例如非常活跃的 YouTube 频道,IFT 成员(包括博士生)有机会传播物理主题的信息,或者参加由 IFT 成员举办的众多讲座,这些讲座均向公众和中学开放。学生将有机会积极参与所有这些活动。