考虑一个粒子从静止状态释放到地球表面上方高度 h 处,纬度为 λ 。假设重力 g 产生恒定的垂直加速度。当粒子到达地球表面时,由于地球自转,粒子会偏离直线,直接朝向地球中心,此时的水平偏转为 h 、 λ 和地球自转角速度 Ω(即 2 π 弧度/天)的形式。
经典物理学的常规相空间对空间和时间的处理方式有所不同,这种差异将导致现场理论和量子力学(QM)。在本文中,通过两个主要扩展可以增强相空间。首先,我们将Legendre转换的时间选择提升为动态变量。第二,我们将物质字段的泊松支架扩展到时空对称形式。随后的“时空空间”用于获得相对论场理论的汉密尔顿方程的明确协变版本。然后提出了形式主义的类似规范的量化,其中田地满足时空的换向关系,而叶面是量子。在这种方法中,经典的行动还促进了运营商,并通过其在物质 - 遗传分区中的不可分割性保留了明确的协方差。在新的非CASAL框架之间建立对应关系的问题(在不同时间是独立的字段)和传统的QM通过将空间类似相关器的概括性化为时空来解决。在这种概括中,哈密顿量被动作和常规颗粒取代,而被壳颗粒取代。量化叶面时,与页面和摇动机制相比,通过对叶状本征的条件来恢复上一个地图。我们还提供了对应关系的解释,其中给定理论的因果结构是从系统与环境之间的量子相关性出现的。这个想法适用于通用量子系统,并允许人们将密度矩阵推广到包含时空中相关器信息的操作员。
总体而言,经典力学是一种非常成功的物理现象描述方法,因为大多数现代工程问题和情况不需要超出经典力学所提供的描述。然而,自上个世纪初以来,人们开始清楚地认识到,实际的物理现实超出了经典描述的范围,需要一种新的方式来描述它。这种描述物理现象的新方法现在被称为量子力学。虽然在大多数情况下,似乎需要量子力学来描述微观世界中的物理现象,而经典力学足以描述宏观现象,但现代实验的进步已经证实,长度尺度上的区分并不正确。事实上,现在人们已经明白,无论物理系统是宏观的还是微观的,量子描述都是正确的描述。然而,在宏观世界中,经典描述足以描述大多数物理现象,因此在这种情况下,并不一定需要量子描述。
对应原则指出,经典力学从适当的限制中源自量子力学。然而,除了这个启发式规则之外,信息理论的观点表明,经典的力学是量子现实的压缩,较低信息的表示。量子力学通过叠加,纠缠和相干性来编码更多的信息,这些信息由于反应,相位平均和测量而丢失,将系统降低到经典概率分布。使用kolmogorov的复杂性来量化此转变,其中经典系统需要信息(n)位的信息,而量子描述仅需要O(2 n),显示复杂性的指数降低。进一步的合理性来自Ehrenfest的定理,该定理可确保量子期望值遵守牛顿的定律和路径的整体抑制,从而消除了当S≫≫时消除了非经典轨迹。因此,我们认为,我们认为经典力学是一种有损的,计算上降低的量子物理学的编码,而不是系统的量子相关性丧失,我们认为经典力学是一种有损的,计算上的编码。
第 5 章 核心课程 – 第一学期 9 5.1 PH-511 数学物理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.2 PH-512 经典力学. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.3 PH-513 量子力学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
本课程将介绍如何使用量子力学系统完成这些任务。底层量子力学导致了一些独特的新特征,这些特征在经典力学中是没有的。这些新特征既可以用来提高某些信息处理任务的性能,也可以用来完成经典领域中不可能或难以完成的任务。