印度空间研究组织 (ISRO) 在其维克拉姆·萨拉巴伊航天中心 (VSSC) 开发了一种 MEMS 声学传感器技术。该传感器用于监测卫星运载火箭发射期间产生的声级。它是一种内置电子设备的压电 MEMS 传感器。MEMS 技术使微型设备能够精确批量制造。该传感器可在恶劣环境下工作,并能经受振动测试、冲击测试、湿度测试、温度浸泡测试。这是第一个在印度运载火箭上进行飞行测试的自主开发的 MEMS 传感器,具有 12 次连续 PSLV 飞行的运行记录。突出特点 突出特点 突出特点 突出特点 • 体相微加工硅振膜,硅上带有压电感应层 • 范围:100 至 180dB(2Pa 至 20KPa) • 频率范围:31.5Hz 至 6.3KHz,1/3 倍频程中心频率 • 灵敏度:150 至 200uV/Pa
旷日持久的 COVID-19 疫情给美国公众带来了多重压力:疾病和死亡的威胁、保持社交距离的隔离效应以及经济活动中断带来的不确定性和困难。人们的适应力正在经受严峻考验。“曲速行动” (OWS) 正在采取特别措施,尽快开发 SARS-CoV-2 疫苗,并在此过程中激发人们对即将到来的救济的希望。尽管疫苗接种有望推出,但有些人(包括那些最有可能受到 COVID-19 影响的人)可能会错过或选择不接种这项保护生命的公共卫生措施。有些人可能担心 SARS-CoV-2 疫苗是否安全,或者他们可能不信任疫苗制造商、行业监管机构和/或推荐这些产品的卫生当局。其他人可能想知道 COVID-19 疫苗是否价格合理、是否容易获得,而无需损失工资或乘坐公共交通工具并冒着感染风险,以及/或在令人感到安全的地方提供。在这种情况下,我们可以做些什么来确保目标人群从 SARS-CoV-2 疫苗中受益?
公共表演 我们的电影放映提供 25 分钟的夜空之旅,随后播放全天幕电影。这些放映由 WCU 本科生负责。以下是 Mather 天文馆目前正在放映的电影的概要。 小行星:极限任务 - 小行星:极限任务带领观众踏上史诗般的旅程,探索小行星为太空旅行提供的可能性。探索宇航员需要做些什么才能到达小行星并将其驯服以供我们使用,以及这种非凡的冒险如何造福人类。这种极端的任务最终可能会让我们学会如何保护我们的星球以及如何成功地在其他星球上居住。 宇航员 - 太空探索是人类有史以来最伟大的事业。要参与这次不可思议的旅程需要什么?要成为一名宇航员需要什么?在宇航员体内体验火箭发射。探索内太空和外太空的奇妙世界,从漂浮在国际空间站周围到在人体微观区域内移动。让我们的测试宇航员“查德”经受太空中发生的一切考验,发现太空中潜伏的危险。
冠心病(CHD)是一种对人类健康和生命构成重大威胁的心血管疾病,对世界造成了巨大的经济负担。然而,与常规的危险因素相比,抑郁症成为冠心病的新型和独立的危险因素。这种情况会影响冠心病的发作和进展,并提高已经受CHD影响的人的不良心血管预后事件的风险。结果,抑郁症引起了全球关注的越来越多。尽管人们的意识越来越不断提高,但抑郁症促进冠心病发展的特定机制仍不清楚。Existing research suggests that depression primarily in fl uences the in fl ammatory response, Hypothalamic- pituitary-adrenocortical axis (HPA) and Autonomic Nervous System (ANS) dysfunction, platelet activation, endothelial dysfunction, lipid metabolism disorders, and genetics, all of which play pivotal roles in CHD development.此外,抗抑郁病患者抗抑郁治疗的有效性和安全性及其对冠心病患者预后的潜在影响已成为有争议的受试者。有必要进行进一步的调查,以解决这些尚未解决的问题。
Schank (1980) 为《Intelligence》杂志撰写了一篇社论,题为“人工智能中有多少智能?”。在本文中,我们将重新探讨这个问题。我们首先简要概述现代人工智能,并展示自 Schank 的论文发表以来 40 年来人工智能的一些突破。然后,我们描述了这些人工智能突破所基于的主要技术,例如深度学习和强化学习;这两种技术在心理学中有着深厚的根源。接下来,我们将讨论人工智能在心理学上的合理性,以及鉴于人工智能学习能力的现代突破,人工智能在心理学上的合理性。然后,我们将探讨人工智能系统实际上有多智能的主要问题。例如,是否有可以解决人类智力测试的人工智能系统?我们得出的结论是,Shank 的观察,即智能完全是关于泛化,而人工智能在这方面并不特别擅长,迄今为止经受住了时间的考验。最后,我们将考虑人工智能见解对于研究智力的个体差异可能意味着什么。最后,我们讨论了人工智能如何促进智能研究,反之亦然,并期待未来富有成效的互动。
摘要:这项研究研究了使用表面分析和电化学测量值改善晚期高强度钢(AHS)的磷酸性的最佳腌制条件。要删除在AHS表面形成的SIO 2,将30wt。%NH 4 HF 2添加到腌制溶液中,从而显着减少AHSS表面上的SIO 2的数量。使用腌制溶液中的HNO 3浓度高于13%,可显着提高磷酸性。此外,用基于HNO 3的溶液而不是基于HCl的溶液腌制后,磷酸盐晶体变得更加细致。电化学阻抗光谱(EIS)的数据表明,经受HNO 3的腌制的AHSS的耐腐蚀性高于基于HCl的腌制的AHSS。参与磷酸盐处理过程的氟化合物仅在基于HNO 3的溶液中形成钢表面。F与磷酸盐溶液反应的F化合物增加了大量溶液的pH值,从而大大提高了磷酸性。由于磷酸盐结构的结束和表面粗糙度的增加,在基于HNO 3的条件下,磷酸性比基于HCl的条件更好。
低空急流是低空大气中的风能最大值。由于它们对风力发电场的发电量有重大影响,因此了解低空急流与风力发电场之间的相互作用至关重要,我们使用大涡模拟对此进行了研究。我们发现,当急流位于风力发电场上方时,风力发电场后部的发电量相对较高。当低空急流位于涡轮机轮毂高度时,后部涡轮机的发电量受到限制。但是,当急流在风力涡轮机下方流动时,后部涡轮机的发电量高于预期。原因是急流的负剪切产生了显著的向上夹带通量,这有助于下游涡轮机从急流中提取能量。虽然从发电的角度来看,低空急流是有益的,但我们的模拟还表明,它们的存在会导致气动载荷的显著周期性变化。这意味着低空急流会增加涡轮机所经受的疲劳载荷,这可能会对涡轮机的寿命产生负面影响。总的来说,我们的工作强调了基础流体动力学研究对于了解风电场流动动力学的重要性。
生物变异本质上是普遍存在的。尽管在受控的环境条件下高度标准化的育种和饲养,但实验室小鼠和大鼠的表型多样性就像人类一样。由此产生的个体间变异性会影响动物疾病模型的各种特征,包括对药物的反应。因此,实验组中平均数据的共同实践可能导致神经科学和其他研究领域的误解。在本评论中,通过测试啮齿动物颞叶癫痫模型中毒药的测试来说明了个体间变异对药物反应性的影响。单个小鼠和大鼠根据标准方案通过治疗进行癫痫发作,分为对抗毒药的反应或不反应的组,从而模仿癫痫患者的临床状况。种群反应不是正态分布的,并且在经受参数统计检验的平均值中进行了不同的响应。遗传,表观遗传学和环境因素被认为有助于药物反应的个体差异,但特定的分子和生理原因尚不清楚。意识到啮齿动物的个体间变异性可以改善对药理实验的行为表型和药物效应的解释。
物理学中最为成熟的两个理论框架是广义相对论和量子场论。广义相对论认为,与刚性背景相反,时空本身是一个动态实体,它与存在于其中的物质相互作用。另一方面,量子场论声称,我们与之相互作用的所有基本粒子实际上都是场的量化激发。这两种理论都经受住了实验的考验,精度令人难以置信;然而,它们都存在概念问题,这表明还有我们尚未发现的更深层次的理论。广义相对论在模拟从苹果掉落到宇宙膨胀等现象方面非常成功,但它也预测了自身的失败:时空奇点不可避免地由恒星坍缩形成,此时曲率变为无限大。另一方面,量子场论受到无限性的困扰更为严重。许多表达式仅以形式表达式的形式存在,尽管可以通过重正化方案消除一些分歧,但我们仍然对量子场论作为自然基本描述的真正有效性产生了质疑。除此之外,尽管广义相对论和量子场论是两种经过最精确测试的理论,但它们是由不相容的数学框架构建的,因此不可能同时成立。还有其他更微妙的问题,例如黑洞信息悖论,它促使我们重新审视我们目前可用的理论。
摘要 - 在这项研究中,提出了独立铜(CU)透明玻璃染色(TGV)的微压。开发了一种创新方法,以获得独立的cu tgvs,其中cu覆盖量被用作微压测试的底板,从而可以直接获得单个TGV的机械响应。根据机械响应,Cu TGV的平均屈服强度为123 MPa,标准偏差为7.85MPa。六个测试的TGV的屈服强度值非常吻合,表明一种可靠且可重复的测试程序。该值略低于Cu TSV的屈服应力值,但在报告的电镀铜的范围内。讨论了影响Cu TGV的机械性能的因子,包括电镀参数和微观结构变化。在本研究中证明的样品制备和微压测试方法可以轻松地用于经受各种制造和退火条件的TGV,这将使处理参数的细节调节以生成具有可取属性的CU TGV的特定属性。该测试的结果还将为预测热模型提供有价值的输入,以使可靠的玻璃插入器的发展。