脑机接口 (BCI) 项目旨在证明,经过训练后,患有严重运动障碍的人(即四肢瘫痪者)能够通过解码脑电活动来控制复杂的功能替代设备,例如四肢外骨骼。BCI 原理源于这样一个事实:移动或想象一个动作会在运动皮层产生类似的电活动。记录和解码称为 ElectroCorticoGrams (EcoG) 的电信号以控制复杂的效应器,例如移动外骨骼的肢体。
抽象深度学习是一种强大的技术,已应用于使用医学成像进行中风检测。中风是一种医疗状况,当大脑的血液供应中断时,会导致脑部损伤和其他严重的并发症。中风检测对于最大程度地减少损害并改善患者预后很重要。中风检测最常见的成像方式之一是CT(计算机断层扫描)。ct可以提供大脑的详细图像,可用于识别中风的存在和位置。深度学习模型,尤其是卷积神经网络(CNN),已经显示出使用CT图像检测中风的希望。这些模型可以学会自动识别图像中指示中风的模式,例如梗塞或出血的存在。在CT图像中用于中风检测的深度学习模型的一些示例是U-NET,通常用于医疗图像分割任务,而CNN已经过训练,这些CNN已经过训练,可以将脑CT图像分类为正常或异常。这项研究的目的是确定在没有造影剂的情况下拍摄的脑CT图像的中风类型,即闭塞(缺血)或出血(出血)。中风图像,并由医学专家构建数据集。深度学习分类模型通过超参数优化技术评估。并使用改进的UNET模型进行了分割,以可视化CT图像中的中风。分类模型,VGG16获得了%94成功。UNET模型达到了%60 iou,并检测到缺血和出血差异。
(Epiphan,美国加利福尼亚州帕洛阿尔托)。所采用的主要人工智能模式是循环神经网络(一种特别适用于序列数据的人工智能类型),该网络经过训练可以计算深度 [1, 2],并结合视觉同步定位和映射 (SLAM) [3]。人工智能软件被应用于 18 名患者的 76 个结肠镜检查视频序列,显示结肠段长度为 4 – 25 厘米。这创建了结肠段的三维 (3 D) 重建,然后识别盲点,显示为重建中的孔洞或间隙,并量化这些非
摘要 — 内部威胁是公司或组织 IT 系统和基础设施最具破坏性的风险因素之一;识别内部威胁引起了全球学术研究界的关注,并提出了多种解决方案来减轻其潜在影响。为了实施本研究中描述的实验阶段,使用卷积神经网络 (CNN) 算法并通过 Google TensorFlow 程序实施,该程序经过训练可以从可用数据集生成的图像中识别潜在威胁。通过检查生成的图像并借助机器学习,可以回答每个用户的活动是否被信息系统归类为“恶意”的问题。
1 生成式人工智能通常被定义为“一种经过训练以创建新数据而不是对特定数据集进行预测的机器学习模型。生成式人工智能系统会学习生成更多与其训练数据相似的对象。” Adam Zewe,《解释:生成式人工智能》(麻省理工学院新闻,2023 年 11 月 19 日),https://news.mit.edu/2023/explained-generative-ai-1109,2024 年 8 月 8 日访问。生成式人工智能是人工智能的一个子集,广泛指自动化人类感知和决策的技术。
图 1. 具有连接权重 𝑤𝑤 𝑖𝑖𝑖𝑖 的 𝑁𝑁 二进制节点(0 或 1)的循环网络。(左)Hopfield 模型。(中)玻尔兹曼机。节点分为两组,可见节点(空心圆)和隐藏节点(灰色)。网络经过训练可以近似给定一组可见模式的概率分布。训练完成后,网络可用于从学习到的分布中生成新实例。(右)受限玻尔兹曼机 (RBM)。与玻尔兹曼机相同,但可见层内或隐藏节点之间没有任何耦合。此变体可用于深度网络的逐层预训练。
图 1. 具有连接权重 𝑤𝑤 𝑖𝑖𝑖𝑖 的 𝑁𝑁 二进制节点(0 或 1)的循环网络。(左)Hopfield 模型。(中)玻尔兹曼机。节点分为两组,可见节点(空心圆)和隐藏节点(灰色)。网络经过训练可以近似给定一组可见模式的概率分布。训练完成后,网络可用于从学习到的分布中生成新实例。(右)受限玻尔兹曼机 (RBM)。与玻尔兹曼机相同,但可见层内或隐藏节点之间没有任何耦合。此变体可用于深度网络的逐层预训练。
基础模型(经过训练可以执行一般功能,例如文本或图像生成或识别,而不是用于特定目的的人工智能模型)使用方面的最新进展是灵活、强大和创新的人工智能生态系统的重要组成部分。这些模型的适应性使它们能够用于广泛的应用程序;灵活性也意味着不良行为者可以滥用它们。然而,它们的灵活性并不意味着从根本上背离基于风险的方法。我们应该将基础模型/通用人工智能的评估和披露方面的最佳实践正式化,以帮助负责任地部署人工智能。监管应努力与技术使用相关的风险和可预见的技术用途相称。
图 1. 具有连接权重 𝑤𝑤 𝑖𝑖𝑖𝑖 的 𝑁𝑁 二进制节点(0 或 1)的循环网络。(左)Hopfield 模型。(中)玻尔兹曼机。节点分为两组,可见节点(空心圆)和隐藏节点(灰色)。网络经过训练可以近似给定一组可见模式的概率分布。训练完成后,网络可用于从学习到的分布中生成新实例。(右)受限玻尔兹曼机 (RBM)。与玻尔兹曼机相同,但可见层内或隐藏节点之间没有任何耦合。此变体可用于深度网络的逐层预训练。
这项工作旨在评估用于银河红移估计问题的光度法(高度理想化)数据集中的某些经典回归模型的性能。线性回归模型,多项式回归,决策树,随机森林和支持向量机经过训练和验证,最初是在训练样本中,与原始基本数据的5%相对应。接下来,在测试样本中评估了这些相同的模型,对应于其余95%的基数,从而允许调整后的模型概括的概括。此外,由于变量之间的高度相关性,主要组件分析技术(PCA)也用于降低系统维度。关键字:星系,光度法,回归,宇宙学,机器学习