获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
紧密结合方法,尤其是密度的功能紧密结合(DFTB)和扩展的紧密结合方案,可以进行大型系统和长时间尺度的有效量子机械模拟。它们是使用务实近似和一些经验术语源自从头算密度的功能理论的,从而确保了速度和准确性之间的良好平衡。可以通过使用机器学习技术调整经验参数来提高其准确性,尤其是在合并有关原子本地环境的信息时。由于紧密结合模型仍然提供了显着的量子机械贡献,并且仅拟合了短量的校正,因此学习过程通常更短,更可转移,因为它可以直接通过机器学习直接在没有基础动机的模型的情况下直接通过机器学习来预测量子机械性能。作为进一步的优势,可以根据紧密结合模型来计算衍生的量子机械量,而无需进行额外的学习。我们已经开发了开源框架 - 结合机器学习工具包,它允许轻松实现此类组合方法。该工具包当前包含DFTB方法的层和GFN1-XTB Hamiltonian的接口,但是由于其模块化结构及其定义明确的接口,因此可以轻松实现其他基于原子的方案。我们正在讨论框架的一般结构,一些基本的实现细节以及几个概念验证应用程序,以证明合并方法的观点和工具包的功能。