摘要 随着人工智能的快速发展,向 K-12 学生介绍人工智能显然是与人工智能技术互动和潜在开发人工智能技术的准备工作的关键。为了成为未来的工作者、创造者和创新者,我们认为学生应该早在小学就接触人工智能的核心概念。然而,构建向 K-12 学生介绍人工智能内容的课程面临着重大挑战,例如与先前知识的联系、开发对学生有意义的课程以及创建教师有信心教授的内容。为了为小学人工智能教育奠定基础,我们调查了 4 年级和 5 年级(9 至 11 岁)学生关于人工智能的日常经历和想法,以提供可能的学习切入点。这产生了围绕学生对人工智能的概念、例子和伦理的主题。对于每个主题,我们将学生的想法与教师对这些想法的反思并列,作为共同设计课程方法的参考框架。
摘要。当飞机被视为最终产品时,它具有复杂的结构,需要管理众多部件。复杂性需要多功能设计活动,而多功能设计需要协作的工作方式才能取得持续成功。这种合作方式只有借助并行工程技术才能实现。目前,在 CAD 工具的数字环境中执行了几项独特的设计活动。产品各部分之间的位置信息和相互关系由关联物理 CAD 链接提供。设计活动期间对 CAD 链接的要求为使用主几何模型作为飞机形状的官方来源和所有相关参与者的几何参考铺平了道路。必须在产品生命周期管理工具中管理主几何模型,以便从概念、设计和制造到产品服务和处置有效地实施和使用模型。当尝试在 CAD 环境中在主几何模型和产品 3D 模型之间建立关联时,可能会观察到一些不恰当的情况。本文将研究这些案例,并通过具体示例提出潜在解决方案,这些解决方案是经验教训活动的结果。
简介 4 目的 4 背景 4 范围 5 宗旨 5 目标 6 结构 6 关键定义 6 课时管理 7 课时管理框架 7 流程支柱 8 实际步骤 8 课时识别 9 步骤 1:捕捉 10 步骤 2:分析 11 步骤 3:识别 12 步骤 4:验证 13 步骤 5:报告 14 步骤 6:分享 14 课时优先排序 15 步骤 1:组织 15 步骤 2:评估 15 步骤 3:评估 16 步骤 4:优先排序 20 步骤 5:分配 20 步骤 6:回顾 20 课时实施 21 步骤 1:领导 21 步骤 2:计划 21 步骤 3:行动 22 步骤4:监控 23 步骤 5:评估 23 步骤 6:报告 23 嵌入学习和变革 24 步骤 1:规划 25 步骤 2:整合 25 步骤 3:监控 25 步骤 4:保证 25 步骤 5:审查 25 步骤 6:成熟 26
摘要。当飞机被视为最终产品时,它具有复杂的结构,需要管理众多部件。复杂性需要多功能设计活动,而多功能设计需要协作的工作方式才能取得持续成功。这种合作方式只有借助并行工程技术才能实现。目前,在 CAD 工具的数字环境中执行了几项独特的设计活动。产品各部分之间的位置信息和相互关系由关联物理 CAD 链接提供。设计活动期间对 CAD 链接的要求为使用主几何模型作为飞机形状的官方来源和所有相关参与者的几何参考铺平了道路。必须在产品生命周期管理工具中管理主几何模型,以便从概念、设计和制造到产品服务和处置有效地实施和使用模型。当尝试在 CAD 环境中在主几何模型和产品 3D 模型之间建立关联时,可能会观察到一些不恰当的情况。本文将研究这些案例,并通过具体示例提出潜在解决方案,这些解决方案是经验教训活动的结果。
日期 时间 事件 切片编号 高度(英寸) 重启 暴露在空气中? 2020 年 1 月 16 日 构建完成 8889 14 2020 年 1 月 14 日 5:10 断电 8764 13.805 7:01 无主动清除,腔室密封 2020 年 1 月 11 日 14:13 电压下降 8084 12.731 14:25 无主动清除,腔室密封 2020 年 1 月 8 日 17:41 空溢流 6562 10.332 18:47 暴露在空气中 2020 年 1 月 4 日 12:48 空溢流 2968 4.674 13:14 暴露在空气中 2019 年 12 月 30 日 构建开始 0 0
a 这项工作得到了瑞典能源署和 Svenskt Näringsliv 的资助。我们感谢在剑桥大学数字研讨会上的评论,以及与 Svenskt Näringsliv、Svenska Kraftnät、Energiforsk 和瑞典能源署项目 46227-1 的参考小组的会议。我们特别要感谢 Zarah Andersson、Peter Cramton、Björn Hagman、Lina Håkansdotter、Marie Knutsen-Öy、Robert Ritz、Malgorzata Sadowska 和匿名审稿人对我们工作的帮助和评论。最后,我们要感谢 Christina Lönnblad 和 Glenn Nielsen,他们协助我们校对和编辑了本文。b 斯德哥尔摩工业经济研究所 (IFN)。剑桥大学能源政策研究组 (EPRG) 副研究员。隶属于斯坦福大学能源与可持续发展计划 (PESD)。 c 斯德哥尔摩工业经济研究所 (IFN)。剑桥大学能源政策研究小组 (EPRG) 副研究员。隶属于斯坦福大学能源与可持续发展项目 (PESD)。
出版商免责声明。印刷前电子出版对于科学的快速传播越来越重要。因此,《Haematologica》以电子方式发布已完成定期同行评审并被接受出版的手稿早期版本的 PDF 文件。此 PDF 文件的电子发布已获得作者批准。印刷前电子出版后,手稿将经过技术和英语编辑、排版、校对并提交给作者最终批准;手稿的最终版本将出现在期刊的常规期刊中。适用于期刊的所有法律免责声明也适用于此制作过程。
• 未来10年,重点发展约3个大型氢能/氨能集群(主要分布在大都市地区),以及约5个中型氢能/氨能集群(将利用其产业特点积累氢能/氨能需求)。
摘要:当飞机被视为最终产品时,它具有复杂的结构和众多需要管理的部件。复杂性要求多功能设计活动,而多功能设计需要协作的工作方式才能持续成功。这种协作方法只能借助并行工程技术来实现。目前,在 CAD 工具的数字环境中执行了几项独特的设计活动。产品各部件之间的位置信息和相互关系由关联物理 CAD 链接提供。设计活动期间对 CAD 链接的要求为使用主几何模型作为飞机形状的官方来源和所有相关参与者的几何参考铺平了道路。必须在产品生命周期管理工具中管理主几何模型,以便从概念、设计和制造到产品的服务和处置有效地实施和使用模型。当试图在 CAD 环境中在主几何模型和产品 3D 模型之间建立关联时,可能会观察到一些不恰当的情况。本文将研究这些案例,并通过具体的例子提出潜在的解决方案,这些解决方案是经验教训活动的结果。