一旦将SOI连接到两个DNA手柄,每个DNA手柄的生物素部分将允许将SOI绑在两个被困在光学镊子中的链霉菌素涂层珠之间(图1)。在此构型中,如果选择了用荧光团手柄的手柄,则荧光团将侧面SOI(来自连接部位的11 bps),并可用于将SOI定位在焦平面上,然后再与荧光蛋白一起孵育。这可以在开始DNA-蛋白质相互作用测量之前实现最佳荧光成像条件的设置,从而可以捕获第一个相互作用。通过选择标记的句柄不同,可以实现与SOI的不对称配置,并且在C-trap中束缚时可以确定5'-3''方向性。此外,如果两个手柄都用Atto荧光团标记,则可以将两个荧光团之间的已知距离用作束缚的DNA上的标尺,以精确确定与SOI相互作用的荧光蛋白DNA序列上的位置。
在经典承诺中,统计绑定意味着几乎所有承诺成绩单最多都有可能的开口。虽然量子承诺(对于经典消息)有时比其经典同行有益(例如在假设方面),它们提供了较弱的结合概念。本质上,发件人不能以明显大于1/2的概率开放给定值的给定承诺。< / div>我们引入了对量子承诺的经典结合概念,该量子承诺提供了类似于经典案例的保证。在我们的概念中,接收器对量子承诺字符串进行(部分)测量,并且该测量结果决定了发件人可以打开的单个值。我们希望我们的概念可以在各种设置中取代经典承诺,而安全证明基本上没有变化。作为一个例子,我们显示了GMW零知识证明系统的合理性证明。我们构建了一种非相互作用的量子承诺方案,该方案是经典的统计结合,并根据任何后量子后单向函数的存在,具有经典的开口。先前的候选人具有固有的量子开口,并且没有经典结合。相反,我们表明,无论假设或复杂性如何,都无法实现统计上隐藏承诺的经典结合。我们的方案只是NAOR的承诺方案(在经典上需要一个常见的随机字符串,CRS),但在CRS的所有可能值中以叠加执行,并重复多次。我们希望使用量子通信去除CRS的技术可以找到其他用途。
L. Scavuzzo,K。Aardal,A。Lodi,N。Yorke-Smith:机器学习增强分支并绑定到混合整数线性编程,ARXIV:2402.05501,2024,数学编程
摘要 - 可变性的绑定是象征性的和认知的基石。但是,在连接主义模型中如何实现约束力使神经科学家,认知心理学家和神经网络研究人员困惑。自然包含绑定操作的一种连接主义模型是向量符号体系结构(VSA)。与其他有关可变结合的建议相反,VSA中的结合操作是维度具有维护性的,它可以代表复杂的层次数据结构,例如树,同时避免尺寸的组合扩展。经典的VSA通过密集的随机矢量编码符号,其中信息分布在整个神经元种群中。相比之下,在大脑中,特征在单个神经元或小组神经元的活性中更局部编码,通常形成神经激活的稀疏载体。遵循Laiho等人。(2015),我们探索了符号推理,并具有稀疏分布式表示的特殊情况。使用来自压制感应的技术,我们首先表明经典VSA中的可变结合在数学上等同于稀疏特征向量之间的张量产品结合,这是另一个众所周知的结合操作,从而增加了维度。这种理论上的结果促使我们研究了二维保护的结合方法,其中包括将张量矩阵减少到单个稀疏向量中。一种通用稀疏矢量的一种结合方法使用随机投影,另一种块状圆形卷积,对于具有块结构,稀疏块编码的稀疏向量定义。我们的实验表明,块 - 本地卷积卷积结合具有理想特性,而基于随机投影的结合也有效,但是有损的。我们在示例应用中证明了具有块圆形圆形卷积和稀疏块码的VSA的性能与经典VSA相似。最后,我们在神经科学和神经网络的背景下讨论了我们的结果。
1 中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn中国北京北京大学2号计算机科学技术系2北京北京北京大学AI行业研究所3中国北京7福吉安省脑衰老和神经退行性疾病的关键主要实验室,基础医学科学学院,福建医科大学,福建,富士,富士,纳米材料和纳米安全的纳米材料和纳米安全性生物医学效应的主要实验室中国北京大学 *应致辞:wangzh@iccas.ac.cn,liuyang2011@tsinghua.edu.cn,majianzhu@tsinghua.edu.edu.cn
药物设计中的中心是对生物分子的鉴定,它们独特而牢固地结合了9靶蛋白,同时最大程度地降低了它们与他人的相互作用。相应地,精确的结合效果10预测,可以从大量的稳定物质中准确选择合适的候选物,这可以大大减少与实际实验方案相关的费用。12在这方面,最近的进步表明,与其他传统计算方法相比,深度学习方法表现出卓越的性能13,尤其是随着大型数据集的出现。14这些方法是复杂且非常耗时的,因此代表着重要的15个瓶颈,用于其开发和实际应用。在这种情况下,16个Quantum机器学习的新兴领域有望增强众多经典的机器学习算法-17 rithms。在这项工作中,我们向前迈出了一步,并提出了一个混合量子卷积18神经网络,该网络能够将经典对应物的复杂性降低20%,而19仍保持最佳性能。此外,这导致在训练阶段的20个成本和时间最高可节省40%的成本和时间,这意味着21种药物设计过程的大幅加速。22
在一个空间尺寸中,非相互作用的晶格标量理论的两个有限(尺寸)的隔离真空区域之间的多体纠缠 - A(d a×d a×d b)混合高斯连续变量系统 - 局部变成局部变成(1 A×A×1 a×1 b)混合量的tensor产品核心。这些核心对内的可及纠缠表现出指数层次结构,因此可以将真空纠缠的主要区域模式的结构提取到空间分离的一对量子检测器中。超过核心,晕光的剩余模式被确定为分离,并且与核心可分开。然而,发现以(1 a×1 b)的形式分布纠缠的状态制备方案,发现混合核心对需要在光环中的额外纠缠,这被经典相关性掩盖。发现这种无法访问(绑定的)光环纠缠是可以反映可访问的纠缠的,但是随着连续体的接近,采取了步骤行为。仍然有可能不利用核心对纠缠的指数层次结构的替代初始化协议可能需要较少的纠缠。纠缠合并有望在较高的维度上持续存在,并可能有助于对渐近自由量规范的经典和量子模拟,例如量子染色体动力学。
6.2 Open circuit voltage hysteresis and experiment on Willenhall Energy Storage System ................................................................................................................. 107
测验旨在测试学生对有关道德的事实和概念的一般知识,以及对道德理论和问题的基本理解。这将要求他们满足(a),(b)和(c)设定的扫盲要求。学生可能还想通过与他人的讨论和协作来提出自己对各种道德问题的看法。为此,小组项目旨在让学生将道德概念和理论应用于社会的实际问题,从而增强了(a),(b)和(c)。该术语旨在为学生提供一个机会,以仔细研究各种道德理论及其在当代道德问题上的应用,并培养他们对美好生活和道德的原始观点。这将带来(a),(b)和(c),就这些问题的个人看法而言。