量子比特承诺方案是通过利用量子通信和量子计算来实现比特(而不是量子位)承诺。在本文中,我们研究了通过并行组成通用量子完美(或统计)隐藏计算绑定比特承诺方案(可基于量子安全单向排列(或函数)实现)获得的量子弦承诺方案的绑定性质。我们表明,与平凡的诚实绑定相比,所得方案满足更强的量子计算绑定性质,我们将其称为谓词绑定。直观且粗略地讲,谓词绑定性质保证,给定一组字符串上的任何不一致谓词对(即,该集合中没有字符串可以满足两个谓词),如果可以打开(声称的)量子承诺,使得所揭示的字符串肯定满足一个谓词,则不能打开相同的承诺,使得所揭示的字符串满足另一个谓词(除了可忽略的概率)。作为一种应用,我们在 Blum 的零知识协议中为 NP 完全语言汉密尔顿循环插入了一个通用的量子完美(或统计)隐藏计算绑定位承诺方案。由此产生的协议的量子计算健全性将直接来自承诺的量子计算谓词绑定属性。结合可以类似地建立为 Watrous [Wat09] 的完美(或统计)零知识属性,这产生了第一个量子完美(或统计)零知识论证系统(健全性误差为 1/2),适用于所有 NP 语言,仅基于量子安全单向置换(或函数)。
机械和航空航天工程罗格斯大学 - 新不伦瑞克省,皮斯卡塔维,新泽西州08854,美国摘要提出了一种新颖的有限元模型,以研究嵌入细胞外基质中轴突的机械响应,当时纯粹在纯粹的非伴随kinematic Kinematic Bounders条件下伸长额。Ogden超弹性材料模型描述了轴突和细胞外矩阵材料的特征。对白质中的两个轴突绑定方案进行了研究,其中一个少突胶质细胞(单ol)具有多个连接的多oligodendrocyte(Multi-Ol)。在多ol绑定构型中,将产生的力随机定向为分布式神经胶质细胞在其附近的轴突周围任意包裹。在单摩尔设置中,位于中央的少突胶质细胞在附近的多个轴突。绑定力针对这种少突胶质细胞,从而导致更大的方向性和较远的应力分布。与轴突的少突胶质连接由弹簧式仪表板模型表示。髓磷脂的材料特性是少突胶质细胞刚度参数化的上限(“ K”)。提出的FE模型可以实现连接机制及其对轴突刚度的影响,以准确确定由此导致的应力状态。对不同连接场景的应力应变图的根平方偏差分析显示,轴突刚度随着束缚的增加而增加,表明少突胶质细胞在应力再分布中的作用。在单醇子模型中,对于每个轴突相同数量的连接,RMSD值随着“ K”(少突胶质细胞弹簧刚度)值的增加而增加。RMSD计算表明,对于“ K”值,与多OL相比,单摩尔模型产生的略微更硬模型。当前的研究还通过随机化和添加连接以确保更大的响应能力来解决多OL模型的潜在几何局限性。两个子模型中注意到的环状弯曲应力表明,轴突损伤积累和重复负载故障的风险。关键字:微力学,有限元素,少突胶质细胞,轴突损伤,CNS白色物质,多尺度模拟,超弹性材料,Abaqus incenclature
本报告中与勘探结果和勘探目标有关的信息基于澳大利亚采矿和冶金学院成员Justin Brown先生汇编的信息。在编译了勘探结果和勘探目标时,布朗先生是Element 25 Limited的雇员。布朗先生是一位地质学家,具有足够的经验,与正在考虑的矿产和矿床类型以及他所从事的活动相关的经验与2012年版的“澳大利亚守则报告勘探结果,矿产资源和矿石储量”的活动所定义的活动相关。布朗先生同意将此信息包含在本报告中出现的形式和上下文中。
坍缩绑定和坍缩分别由 Unruh (Eurocrypt '16) 提出,作为计算绑定和抗碰撞的后量子强化。这些概念在促进将经典安全证明“提升”到量子设置方面非常成功。然而,一个基本而自然的问题仍未得到解答:它们是足以实现这种提升的最弱概念吗?在本文中,我们通过给出一个经典的承诺和开放协议来肯定地回答这个问题,该协议是后量子安全的,当且仅当所使用的承诺方案(分别为哈希函数)是坍缩绑定(分别为坍缩)。我们还将坍缩绑定的定义推广到量子承诺方案,并证明当此承诺和开放协议中的发送者传达量子信息时,等价性仍然有效。因此,我们确定各种“弱”绑定概念(和绑定、CDMS 绑定和明确性)实际上等同于坍缩绑定,无论是后量子承诺还是量子承诺。最后,我们证明了一个“双赢”的结果,表明非坍缩绑定的后量子计算绑定承诺方案可用于构建模棱两可的承诺方案(反过来,该方案可用于构建一次性签名和其他有用的量子原语)。这强化了 Zhandry(Eurocrypt '19)的结果,表明同一对象产生量子闪电。
6 功能描述 ................................................................................................................................................ 35 6.1 总体描述 ................................................................................................................................................ 35 6.1.0 概述 ................................................................................................................................................ 35 6.1.1 绑定机制 ............................................................................................................................................. 35 6.1.1.1 概述 ............................................................................................................................................. 35 6.1.1.2 会话绑定 ............................................................................................................................. 36 6.1.1.3 PCC 规则授权与 QoS 规则生成 ............................................................................................. 36 6.1.1.4 承载绑定 ............................................................................................................................. 38 6.1.2 报告 ............................................................................................................................................. 38 6.1.3 信用管理 .............................................................................................................................
通过与所有原始边缘匹配的所有层结合被子顶部。斜切角。从您开始的地方停止大约12英寸(30.48厘米)。将沿被子边缘平坦的绑定的两个松散末端放置。,这两个松散的情况相遇,将它们折回自己,然后按以形成折痕。使用此折痕作为缝线线,将绑定的两个开口端一起缝在一起。将接缝至¼英寸(.64厘米),然后按打开。完成缝制与被子的结合。16。将绑定到被子的背面和
我们研究量子环境下计算绑定字符串承诺方案的定义和构造。承诺方案是一种双方协议,由两个阶段组成,即承诺阶段和开放阶段。承诺的目标是允许发送者在承诺阶段传输与消息 m 相关的信息,以使接收者对消息一无所知(隐藏属性)。但同时,发送者不能在之后改变对消息的想法(绑定属性)。之后,在开放阶段,发送者透露消息 m 并证明这确实是它之前想到的消息。我们将重点关注非交互式经典承诺,即承诺和开放阶段由单个经典消息组成。然而,试图打破绑定或隐藏属性的对手将是一个量子多项式时间算法。乍一看,似乎这种环境下绑定属性的定义很简单;我们只采用经典定义,但考虑量子对手而不是经典对手:
标准授予问题1绑定RET [M918T]] 5绑定BRAF,SRC,S6K 1、3或9如果这些目标的1、2或3绑定避免避免MKNK1* 3避免TTK,ERK8,PDK,PDK,PDK,PAK3 1、2、3或4如果它避免了AR bak,则避免了这些目标,如果它避免了5个目标。结合FGFR1,LKB 1或3,如果这些靶标的结合1或2避免PAK3* 3避免MAP3K7* 3避免了PIK3CA 1进入CNS 3的PIK3CA 1 3这两个问题新颖的能力2使用专利2类药物3类药物3表1-对问题1和2。标明目标表明182
• 信道绑定需要连续的频谱来绑定两个信道。 • 由于通常需要 DFS,5 GHz 在整个频谱中存在一些间隙,因此系统无法使用信道绑定来利用所有信道。 • 信道绑定时噪声加倍,因为噪声从两个相邻信道累积而 AP 以相同功率传输,因此 SNR 降低。 • 每次信道绑定(40 MHz)都会导致 SNR 降低 3 dB。 • 对于 80 MHz 信道,SNR 将降低 6 dB。 • EIRP 规则确定最大传输功率水平,而不管信道宽度如何。 • 6 GHz 有新的阈值代替 EIRP - 它称为功率谱密度 (PSD)。 • PSD:允许低功率室内 (LPI) AP 传输更多功率,同时使用更多信道宽度容量来克服此问题。 • Wi-Fi 6E LPI 的最大功率为 5 dBm/MHz PSD。 • 这意味着每次信道宽度加倍时都会增加 3 dB 的最大功率。