今天的惯性导航系统(INS)的实现发生在所谓的“皮带降”技术中,其中所有惯性传感器(陀螺仪和加速传感器)都安装在车辆上。过去,这些系统是在所谓的“ gimbal”技术中设计的,其中陀螺仪用于机械地稳定太空中的加速度传感器。在绑带系统中,稳定化是数学上的,因此所有惯性传感器均暴露于整个车辆动力学。由于缺乏机甲鼻子式辅助,在运行中的皮带系统要比Gimball Systems强大得多,但是测量范围,尺度的准确性和传感器的稳健性的要求相应地更高。
信贷支付新电力输电线路的6%,改进的现有传输线和相关财产,乘以5倍乘数(总计30%),以满足符合现行工资和学徒要求的项目。如果新线,该线必须主要用于增强弹性,解决清除问题,促进电气互连,并且是超过750兆瓦的超导传输线,或者包括先进的传输导体。如果现有的传输线,项目必须将现有线的传输能力提高至少500兆瓦。如果相关属性,则该项目可能包括互连,发电机绑带线,网格增强技术或子组件。标题II:提高电网的治理和效率。
altermagnetism是凝结物理学中的新兴领域。理论上已经考虑了这个新的磁相,然后在实验上观察到。无净磁化和旋转依赖的电子带结构的组合使Altermagnets吸引了候选者,用于在诸如Spintronics和超导率等领域的应用。通过数值考虑,预计Altermagnets的自旋绑带敏感性将显示在(ω,⃗Q)空间中的分裂,而抗fiferromagnets并未显示。已建议使用Inelastic中子光谱探测这种分裂,以作为检测Altermagnetic材料的实验程序。在本论文中,我们分析研究了非交互式Altermagnetic电子气体的简单最小模型的旋转可测量。表达式,并通过数值考虑和与已知限制病例的比较进行了验证。然后,讨论了与所考虑的敏感性相关的单粒子激发光谱。最后,提出了进一步的分析考虑,例如电子电子相互作用。
用碳纳米颗粒催化的石油碳氢化合物的液相有氧氧化集中在多组分石油原料的合理加工上的实际实用性。使用含金属的碳纳米结构作为催化剂,可以在最现代的绑带中考虑已知的氧化过程,并同时提出了有关动力学和过程机制的相关问题。本文描述了在存在含铁的多壁碳纳米管FE@MWCNT的情况下,柴油燃料石蜡 - 萘型的正式动力学定期。工作的目的是确定催化剂的活性及其作用机理。在80°C下进行反应,在该反应下,已知氢过氧化物的热分解几乎不存在,并且反应不会引发。诱导期,动力学曲线的曲线和氧气吸收率是催化剂活性的标准。结果表明,Fe@MWCNT添加剂具有提高柴油分数有氧氧化速率的显着能力。一般的石油级催化氧化方案,其中提出了纳米碳载体上的催化剂降低C-H键的解离能,并激活水氧化物将水氧化物分解为活性活性反应性颗粒。
提出了图中所示的方案1 a。传入的光子通过偏光束分离器(PBS),因此只能从单面腔中反射V极化,该腔与#J I $#0 J I Transition伴侣。H极化反映在镜像上,并与V极化重新组合以形成绑带旋转状态:ψENT;超出¼αH; #jiÞβv; #JIαH; “ jiβv;” j i。随后对光子状态的测量预示着极化量子值向原子的转移,如最近使用捕获的中性原子4和钻石颜色中心5的实验中所证明的那样。然而,在自由空间设置中,一个重大的技术挑战涉及需要保持两个空间分离的长度极化路径之间相位差的稳定性4。在本文中,我们提出了一个整体,微米级的光子结构,将H和V路径结合到一个相稳定的结构中(图1 b)。我们估计,该系统将使国家转移限制超过99%。这个极化编码的光子到旋转界面(PEPSI)极大地简化了量子网络,并具有偏振编码的光子与原子记忆结合。
完全同构加密(FHE)是一种有前途的加密原始原始性,用于实现私人神经网络推理(PI)服务,通过允许客户端将推理任务完全卸载到云服务器,同时使客户端数据不符合服务器。这项工作提出了Neujeans,这是一种基于深层卷积神经网络(CNN)PI的解决方案。neujeans解决了CNN评估的巨大计算成本的关键问题。我们介绍了一种称为系数中插槽(CINS)编码的新型编码方法,该方法可以在一个HE乘法中进行多次插入而无需昂贵的插槽排列。我们进一步观察到编码是通过在常规插槽编码中的密文上进行离散傅立叶变换(DFT)的前几个步骤来获得的。此属性使我们能够保存CINS和插槽编码之间的转换,因为启动绑带密文始于DFT。利用这一点,我们为各种二维卷积(Conv2D)操作设计了优化的执行流,并将其应用于端到端CNN启动。neujeans与基于最新的FHE PI工作相比,高达5.68倍的Conv2D激活序列的性能加速了,并在仅几秒钟内就可以在Imagenet的规模上执行CNN的PI。
简介:低强度激光(LLLT)治疗已用于减轻正畸治疗期间施加的力量所引起的不适和疼痛。目的:评估LBI应用对正畸牙移动过程中牙周膜受压初期痛觉的影响;并比较该疗法在两性之间的效果。材料和方法:样本包括 30 名志愿者,他们需要对第一下磨牙进行绑带处理。安装分离橡皮圈后,在照射侧的近远中根尖区(波长 808nm、能量 2J、时间 20s、能量密度 8.32J/cm2)及根区三处点位(波长 808nm、能量 1J、时间 10s、能量密度 4.16J/cm2)进行红外线 LLLT 照射,并与未照射的对侧第一磨牙(对照侧)进行比较,照射时间 3 个时间点为:0hs、24hs 和 48hs。通过在安装后 0 小时、24 小时和 48 小时解释视觉模拟量表 (VAS) 来评估疼痛感知,显著性水平为 5%。结果:观察发现,无论性别和时间如何,接受照射的一侧的疼痛程度明显较低(p<0.05)。无论时间和部位,女性的疼痛程度都明显高于男性(p<0.05)。时间之间没有显著差异(p>0.05)。结论:LBI 降低了通过弹性分离促进牙周膜压缩的患者的初始疼痛感知,并且在观察时间内女性表现出更高的疼痛敏感性感知。
在游泳的绑带中,我们与许多由于大脑异常而影响身体残疾的人,会影响肌肉中的音调和运动控制。除了在运动方面遇到身体困难外,它们还具有称为皮质视觉障碍的共存状态。什么是皮质视觉障碍?皮质视觉障碍或脑视觉障碍(CVI)是一个用来描述由于脑损伤引起的视觉障碍的术语。CVI不同于其他类型的视觉障碍,这些视觉障碍是由于眼睛的物理问题。CVI是由对大脑视觉中心的损害引起的,大脑的视觉中心会干扰大脑和眼睛之间的通信。眼睛可以看到,但是大脑没有解释所见的内容。这是在大脑视觉中心受伤的条件下发现的。神经塑性是一个重要的概念,可以在与这些人合作时了解。神经可塑性被定义为“神经系统通过重新组织其结构,功能或损伤后的结构,功能或连接(例如中风或脑外伤)或创伤性脑损伤(TBI)来改变其活性而改变其活性的能力”。正是这个概念驱使我们成为水生治疗师,为我们的患者带来丰富的经历和运动机会,以帮助重新布线大脑。水生治疗对CVI有益吗?我们使用前庭输入(特定方向的位置运动和变化)和本体感受性输入(压缩肌肉和关节检测压力并有助于身体意识),以及声音和触摸以增强感官并帮助患者处理信息。
弗雷德里克斯堡,弗吉尼亚州22406摘要美国陆军研究实验室(ARL)正在探索技术,以提供低成本的火灾,适用于直接和间接消防武器系统。这些应用之一涉及一个前向观察者(FO),用激光斑点指定目标,并在船上搜索弹药,检测反射能量以允许终端指导。这种方法,称为半活性激光(SAL)指南,已用于许多空运弹药中,包括炸弹,导弹和弹丸。但是,这些系统的成本是由高质量光学,高灵敏度检测器和专业电子设备驱动的,它阻碍了它们迁移到枪支弹药(例如迫击炮,炮兵和手榴弹)中。要探索,开发和展示最低的成本解决方案,ARL投资了一个称为较小,更轻,更便宜的弹药组件(SLCMC)的陆军技术目标(ATO)。具体来说,基于商业组件(COTS)和质量生产技术的Sal Seeker硬件正在原型中,用于与枪支发射的弹丸和激光目标指定器一起使用。Seeker系统由几个印刷电路板板,一个微处理器,四翼检测器和模制的光学镜头单元组成。该寻求者旨在快速更新弹丸孔的角度,与其他皮带向下的传感器接口,并将数据馈送到机上指导,导航和控制(G,N&C)系统中,以允许进行弹丸操作。探索者的设计和基本特征将在论文和演示中进行讨论和介绍。关键词寻求者,弹药,精密火灾,炮兵,半活性激光,指导系统,带有动态科学的绑带传感器 *,并根据ARL,APG,MD