为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
微生物驱动全球碳循环1,并可以与宿主生物体建立象征关系,从而影响其健康,衰老和行为2 - 6。微生物种群通过改变可用的代谢物池和专门的小分子7、8的产生与不同的生态系统相互作用。这些群落的巨大遗传潜力被人相关的微型iSms举例说明,该微生物ISM的编码是人类基因组9、10的大约100倍。然而,这种代谢潜力在现代的未纳入代谢组学实验中仍未被反射,其中通常<1%的注释分子可以归类为微生物。这个问题特别影响质谱(MS)基于非靶向代谢组学,这是一种通过微生物11所产生或修饰的分子11的常见技术,该技术在复杂生物学样品的光谱注释中著名地挣扎。这是因为大多数光谱参考文献都偏向于原代代谢产物,药物或工业化学品的市售或以其他方式的标准。即使在注释代谢物时,也需要进行广泛的文献搜索,以了解这些分子是否具有微生物起源并识别各自的微生物生产者。公共数据基础,例如Kegg 12,Mimedb 13,Npatlas 14和Lotus 15,可以帮助进行这种解释,但它们大部分限于已建立的,很大程度上基因组所涉及的代谢模型或完全表征和发行的分子结构。此外,虽然旨在从机械上开发了旨在询问肠道微生物组的靶向代谢组学努力16,但它们仅着眼于相对较少的商业可用的微生物分子。因此,尽管MS参考文库不断扩大,但大多数微生物化学空间仍然未知。为了填补这一空白,我们已经开发了Microbemasst(https://masst.gnps2.org/microbemasst/),这是一种利用的搜索工具
超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。
目的 囊性纤维化 (PWCF) 患者患结直肠癌的风险明显高于一般人群 1 。本文概述了英国某个区域中心针对 PWCF 的结直肠癌筛查计划的设计和实施情况。方法 实施“计划-执行-研究-行动”循环来建立该服务。它确定了服务设计的临床考虑因素,并结合实时服务用户和利益相关者的反馈,以简化服务提供。结果 确定了服务设计中的实际考虑因素,包括需要针对 CF 的肠道准备和内窥镜检查计划、监测间隔的实用方法以及需要多学科治疗方法。试点阶段进行了 14 次结肠镜检查。64% (9/14) 的肠道准备良好或优秀,100% (14/14) 报告肠道准备可忍受并愿意重复该程序,腺瘤检出率为 28.6%,发现 1 个晚期息肉。确定了准备不足的个体风险因素,包括既往远端肠梗阻病史和非专用 CF 病房的住院肠道准备。讨论作者提供了 PWCF 筛查服务的真实经验作为服务设计的蓝图。随着 PWCF 患者寿命的延长和生活质量的提高,内窥镜检查服务充分满足他们的需求非常重要。
在过去的十年中,我们看到了机器学习可以为我们做的巨大突破。现在似乎不可能执行计算机执行的任务。 此类任务的突出示例包括图像或语音识别。 在这个项目中,我们建议使用深度学习(机器学习的一部分)来解决纯数学的困难问题,即特定的结理论。 更确切地说,提出的项目由三个部分组成(请参见下面的第1、2和3个部分)。 第一部分包括训练人工神经网络,以预测结的两个重要特性。 一旦完成第1部分和第2部分,结果将应用于解决结理论中一个重要的开放问题;琼斯多项式是否检测到没有打结的问题。 申请人具有纯数学(代数,几何,拓扑)的背景,重点是结理论。 我们要求$ 5,000的夏季薪水,因此申请人有资源能够度过一整个夏季的资源,以扩大对深度学习的最新方法的了解,收集初步数据(即创建一个结图的数据库),培训神经网络,并设计适合学生参与的后续行动。 请注意,申请人已经开始在阿拉巴马大学建立一个机器学习社区,参加了一个非正式研讨会,该研讨会是由2022年春季数学和统计学系的教职员工和学生组织的。>现在似乎不可能执行计算机执行的任务。此类任务的突出示例包括图像或语音识别。在这个项目中,我们建议使用深度学习(机器学习的一部分)来解决纯数学的困难问题,即特定的结理论。更确切地说,提出的项目由三个部分组成(请参见下面的第1、2和3个部分)。第一部分包括训练人工神经网络,以预测结的两个重要特性。一旦完成第1部分和第2部分,结果将应用于解决结理论中一个重要的开放问题;琼斯多项式是否检测到没有打结的问题。申请人具有纯数学(代数,几何,拓扑)的背景,重点是结理论。我们要求$ 5,000的夏季薪水,因此申请人有资源能够度过一整个夏季的资源,以扩大对深度学习的最新方法的了解,收集初步数据(即创建一个结图的数据库),培训神经网络,并设计适合学生参与的后续行动。请注意,申请人已经开始在阿拉巴马大学建立一个机器学习社区,参加了一个非正式研讨会,该研讨会是由2022年春季数学和统计学系的教职员工和学生组织的。
RAS 作为阳性预测生物标志物:重点关注肺癌和结直肠癌患者/Malapelle,U.;帕西利亚 (Passiglia),F.;克雷莫里尼,C.;皇家,ML;佩珀,F.;皮萨皮亚,P.;阿瓦隆,A.; Cortinovis,D.;来自 Stefano, A.;法桑,M.;方塔尼尼,G.;加莱塔,D.;劳里塞拉,C.;列表,A.;卢帕基斯(Loupakis),F.;佩奇斯,F.;皮埃特兰托尼奥,F.; Pilotto,S.; Lines,L.;比安奇,AS;帕拉,HS; Tiseo,M.; Verze,M.; Troncone,G.; Novello, S..-出自:欧洲癌症杂志。 - ISSN 0959-8049。 - 146:(2021),页74-83。 [10.1016/j.ejca.2021.01.015]
ECCO 优质癌症护理基本要求 (ERQCC) 是为特定肿瘤类型的患者提供高质量护理所必需的组织和行动清单和说明。它们主要是组织建议,而不是临床指南,旨在为肿瘤学团队、患者、政策制定者和管理者提供任何医疗保健系统中提供高质量护理所需的要素的概述。在适当的情况下参考临床指南和其他资源,重点是欧洲的护理。本 ECCO 要求系列的基础是质量概念,随着人口中需要护理的老年人数量不断增加,随着许多新的和复杂的治疗方法投入使用,以及对有效利用资源的压力越来越大,质量在医疗保健的各个方面都变得越来越重要。政策制定者和患者需要知道他们的医疗保健人员、技术和设施是否针对每种疾病进行了最佳配置。在这种情况下,提高癌症护理质量意味着提供