摘要:在GAAS型量子井中二维(2D)磁磁体的特性,其经受了强烈的垂直磁场的作用,其与直接库仑电子孔(E-H)相互作用确定的结合能的作用,并讨论了E-H Spin Spin Projections 1 f-firections 1 f-distect。在库仑交换电子孔相互作用的影响下,由磁excitons形成的新叠加状态出现。在线性极化为正(负)均衡的情况下,允许对称状态(不对称)状态,并且在线性极化为负(正(正)平等的情况下,禁止使用。这两个对称和不对称的叠加态揭示了量子干扰效应。获得的光学结果开放了使用Dirac Cone分散法研究2D Bose气体的热力学特性的可能性。
摘要:合成、表征了 Ni/α-Al2O3 催化剂和一系列双金属催化剂(包括 Pd-Ag、Ni-Pd、Ni-Zn、Ni-Ag 和 Ni-Ga)并在乙炔选择性加氢制乙烯中进行了测试。双金属催化剂 Ni-Ga 与 Pd-Ag 基催化剂相比表现出几乎相同的乙烯选择性。评估了 Ni/Ga 比对乙炔加氢催化活性和乙烯选择性的影响。通过透射电子显微镜、X 射线衍射、氢气程序升温还原和 X 射线光电子能谱进行表征,以确定 Ni-Ga 基催化剂上的活性相,这与催化性能和催化剂上发生的反应机理相关。 Ni-Ga晶格结构中Ga的存在限制了解离H*的移动,降低了乙烯的吸附结合能,从而可以防止乙炔过度加氢。
我们研究了一种在原子薄的半导体中诱导超导性的机制,激子介导电子之间的有效吸引力。我们的模型包括超出声子介导的超导性范式的相互作用效应,并连接到玻色和费米极性的良好限制。通过考虑TRIONS的强耦合物理,我们发现有效的电子相互作用会形成强频率和动量依赖性,并伴随着经历了新兴的BCS-BEC交叉的系统,从弱绑定的S-波库珀对Bipolarons的超浮雕。即使在强耦合时,双丙酸也相对较轻,从而导致临界温度占费米温度的10%。这使二维材料的异质结构有望在通过电子掺杂和Trion结合能设置的高临界温度下实现超导性。
非晶态二氧化铪 (a-HfO 2 ) 广泛用于电子设备,例如超大规模场效应晶体管和电阻存储单元。a-HfO 2 中氧空位 (OV) 缺陷的密度对非晶态材料的电导率有很大影响。最终,OV 缺陷是造成导电细丝路径形成和断裂的原因,而导电细丝路径可用于新型电阻开关设备。在这项工作中,我们使用从头算方法研究了 a-HfO 2 中的中性 OV。我们研究了 OV 的形成能、双 OV 的结合能、不受干扰和在氢原子附近存在时的 OV 迁移以及氢原子向 OV 的迁移。与结晶 HfO 2 中的势垒 (2.4 eV) 相比,a-HfO 2 中存在浅而短程的 OV 迁移势垒 (0.6 eV)。附近的氢对 OV 迁移的影响有限;然而,氢可以通过在OV之间跳跃而轻易扩散。
一般方法S2合成芳唑酯的一般程序1 S3程序,用于合成苯胺前体2q和2R S7的一般方法,用于光促进RGO S8 XPS的功能化功能化功能化的1- RGO材料S10 XP的rgo材料与纤维中的靶标S11 XPS的功能性S11 S11 XPS XPS xps apper, molecules S12 XPS of rGO functionalized with bromine-bearing target molecules S13 XPS of rGO functionalized with pyridine and thiophene-bearing target molecules S14 XPS of rGO functionalized with iodine-bearing target molecules S15 XPS characterization of the functionalized 1 - GO S16 Procedure for the Suzuki coupling on functionalized 1m - rGO S18 XPS结合能和C 1S拟合了功能化1A -HOPG S23吸收光谱S25 NMR光谱S33 S33参考S42
注释:使用多个超声波马达和自校准编码器的高精度角度发生器 Rev. Sci. Instrum. 82, 116108 (2011) 使用标准具和带约束的拟合方法对条纹相机进行准确高效地表征 Rev. Sci. Instrum. 82, 113501 (2011) 使用大型螺旋装置中高密度等离子体发射的可见光和极紫外轫致辐射连续体的径向轮廓对平场空间分辨极紫外光谱仪进行绝对强度校准 Rev. Sci. Instrum. 82, 113102 (2011) 痕量水的动态重量标准 Rev. Sci. Instrum. 82, 105102 (2011) 注释:使用单个样品对光电子能谱的电子能谱仪进行结合能尺度校准 Rev. Sci. Instrum. 82, 096107 (2011) 有关 AIP Conf. Proc. 的附加信息。
过去几十年来,生长技术的令人瞩目的进步使得人们能够制造出非常高质量的低维半导体结构——量子阱、量子线和量子点,这为光电子学和自旋电子学领域的量子信息技术开辟了新的研究途径和无数的应用 1-3 。作为量子限制的直接结果,基本半导体激发可以达到非常大的结合能,使所谓的“激子”领域成为一个有前途的研究领域 4 。虽然激子的概念在空间限制沿一维(量子阱)或二维(量子线)时有意义,但我们在这里表明,当三个空间维度受到限制(量子点)时,束缚电子-空穴对作为激子的图像会被打破。这就是为什么我们不应该像对待其他结构那样将量子点 (QD) 中的电子-空穴对称为激子,而应该使用其他术语。这个问题不仅仅是语义问题;对于电子-空穴对与其他载流子相互作用并与光子耦合,以及光子吸收的可能性,物理理解完全不同。
kagome磁铁为多种拓扑量子现象提供了一个引人入胜的平台,其中沮丧的晶体结构,磁化和旋转轨道耦合(SOC)之间的微妙相互作用可以产生高度可调的拓扑状态。在这里,利用角度分辨光发射光谱法,我们直接在A-A堆叠的Kagome磁铁GDMN 6 SN 6中直接可视化具有强大平面分散体的Weyl线。值得注意的是,Weyl线分别表现出强大的磁化方向可调节性SOC间隙和结合能可调节性,分别用TB和LI代替GD。我们的结果不仅说明了磁化方向和价算作有效的调整旋钮,以实现和控制不同的三维拓扑阶段,而且还证明了AMN 6 SN 6(a =稀土或Li,Li,Mg,CA)是用于探索多样化出现的出现拓扑量化响应的多功能材料家族。
作为碳捕获和利用方面的一致努力的一部分,电化学二氧化碳还原反应(CO 2 RR)是实现圆形碳经济的有前途的方法。二维金属碳化物和氮化物(MXENES)由于其可调的电子和表面性能而被吹捧为CO 2 RR的一种有吸引力的材料,这为破坏了传统过渡金属催化剂的中间结合能的线性缩放关系提供了可能的途径。尽管有大量的理论研究对MXENES作为CO 2 RR电催化剂的乐观前景,但仍有无数的未解决的问题以及未开发的设计机会,需要进一步的实验性优化才能实现MXENES的承诺潜力。在此,我们讨论了MXENES如何打破上述比例关系,以及MXENES修饰的方法可以改善其催化性能,包括缺陷工程和MXENES异质结构。最后,我们通过总结了当前的挑战和可能带来的策略,以实现MXENES的潜力。
图1。晶体学结构和材料表征几层气体 - 纳米片。粘液和球格式的气体晶体表示。(a)三层气体的侧视图,表现为单位电池C =17.425Å由三个气体层组成。(b)气体晶体的顶视图。在这里,GA和S原子分别用绿色和蓝色球表示。(c)SEM图像(LPE样本:左上角和ME样本:右上方)和EDS配置文件(底部)的exfoliated Gas Nanoseets。EDS轮廓中的插图指示所获得的纳米片的原子比。在(d)GA 3D和(E)S 2P和GA 3S结合能区域中气纳米的高分辨率XPS光谱。(f)具有相同强度轴的3L,10L,LPE和散装气体的拉曼光谱。散装气体的拉曼振动模式被标记为𝐸1𝑔