b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。
作者的完整列表:Xia,Xinxin;香港中国大学,勒;香港城市大学,成谷; Zhejiang University Chen,Zeng; Yao,Nannan Yao;生物分子和有机电子学,物理,化学和生物学系,林克平大学,SE-581 83,瑞典林肯,Qin,Minchao;鲁伊香港中国大学; Zhenzhen张大学武汉大学高级研究所; Yuyu化学研究所CAS PAN; Shenyang技术大学,Yiqun石油化学工程学院;香港林的中国大学Yuze; iccas,; Min,Jie;冯汉大学高级研究所,冯汉;链接大学,物理,化学和生物学; Jinan University,Physics Zhu,Haiming;吉安格大学,布雷达斯,让·卢克;亚利桑那大学,化学与生物化学陈,洪宗;千江大学聚合物科学与工程系的郑大学;香港城市大学,新华社化学,材料科学与工程学;香港中国大学,物理
共轭聚合物的融化具有溶液加工的一种环保替代方案的潜力,但是分子属性和潜在控制策略的具体作用仍然在很大程度上没有探索。在这里,两个系列的剖面聚(3-己基噻吩)(p3HT)表明,链长的效果在很大程度上取决于链缺损的量(RegieRotality)。超出链折叠过渡,增加分子量M W对于90%的防治性P3HT,导致结晶动力学和降低的热稳定性的结晶质量较慢,而95%的RendOreTorgularity使结晶几乎对链长不敏感。融化的自种可用于操纵P3HT的结晶温度,但是当结晶被阻碍最大时,最有效。更长,更有缺陷的链。p3HT自种由最初存在的微晶的热稳定性主导,而不是仅取决于m w的扩散效应。总体而言,结果强调了控制和报告剖面和分子量的关键需求。
本质上,一些蛋白质自发地在活细胞中结晶。这些晶体具有生物学功能,例如蛋白质储存,病毒保护,异质催化和免疫系统激活[1,2]。由于Polyhedra的结构(其中一种细胞蛋白晶体)在2007年确定[3] [3],因此,在下一代结构生物学工具中引起了人们的注意,因为它不需要多步纯化过程或大规模结晶筛选。已经开发了几种ICPC方法,包括高通量筛选和细胞培养过程的优化。然而,在获得ICPC结构的各种蛋白质晶体方面仍有待解决的重大问题尚待解决,因为晶体通常在细胞中偶然形成。因此,将这种方法应用于蛋白质结构分析时必须克服几种技术挑战。如果可以建立一种新的ICPC方法,则预计它将成为一种更容易访问的结构分析技术。无细胞蛋白合成(CFP)是一种用于合成生物学的蛋白质制备技术,非常有效地筛选蛋白质合成[4]。但是,它被认为不适合需要大量蛋白质(例如结晶)的结构生物学工作。在这里,我们报告了使用CFPS的直接蛋白质结晶方法的无细胞蛋白质结晶(CFPC)的发展[5]。翻译反应是通过双层法进行的。1(a))。1(b))。我们(1)使用CFPS建立了小规模和快速结晶,(2)通过添加化学试剂来操纵结晶。通过用细胞质多角质病毒(CPV)感染在昆虫细胞中产生的多面体晶体(PHC)是研究最多的细胞内蛋白质晶体之一。CFPC的最关键优势是可以将反应量表和时间最小化,并且可以在反应过程中添加各种试剂。使用小麦生殖蛋白合成试剂盒(WEPRO7240表达试剂盒)进行多面体单体(PHM)的结晶,因为这些提取物已被鉴定为真核系统中蛋白质表达的最高蛋白表达活性。将含有10 m L的WEPRO7240和10 m m的mRNA溶液的20 m L反应混合物放在1.5 mL微管中,用200 m l亚amix SGC溶液覆盖,并在20°C下孵育24小时(图离心反应混合物,并收集白色沉淀(图结晶
1俄罗斯科学院普罗夫洛夫通用物理研究所,俄罗斯莫斯科119991 Vavilova St. 38; avsimakin@gmail.com(A.V.S.); Aleksej.baryshev@gmail.com(A.S.B.); pobedonoscevroman@rambler.ru(R.V.P.); inyabaymler@yandex.ru(i.v.b。); rebezov@yandex.ru(M.B.R.); rusa@kapella.gpi.ru(R.M.S.); astashev@yandex.ru(M.E.A。); dikovskayaao@gmail.com(A.O.D。); bronkos627@gmail.com(e.a.m.); v.kozlov@hotmail.com(V.A.K.); nbunkin@mail.ru(n.f.b。); iwe88@rambler.ru(v.e.i。); kuder_1996@mail.ru(k.o.a.); voronov@lst.gpi.ru(V.V.V.); shafeev@kapella.gpi.ru(G.A.S.)2俄罗斯科学院植物病理学研究所俄罗斯科学研究所,143050俄罗斯大维利齐米; cmakp@mail.ru(M.A.S.); kalinitch@mail.ru(V.P.K.)3尼兹尼·诺夫哥罗德州立大学生物学与生物医学研究所,603022尼兹尼·诺夫哥罗德,俄罗斯,俄罗斯4号州立辐射医学和保护国家关键实验室,放射学和跨学科科学学院(RAD-X)苏州215123,中国; gaomy@iccas.ac.cn(M.G.); liruibin@suda.edu.cn(r.l.)5,105005俄罗斯莫斯科7 A.A. Baikov冶金与材料科学研究所(IMET RAS),俄罗斯科学院,莱宁斯基潜在客户,49,119334,俄罗斯莫斯科; kolmakov@imet.ac.ru(A.G.K.); 79031927386@yandex.ru(M.A.K.)5俄罗斯科学院的细胞生物物理研究所,联邦研究中心,“俄罗斯科学学院的Push-Chino科学研究中心”,Institutskaya St.,3,142290 sharapov.mars@gmail.com 6鲍曼莫斯科州立技术大学基础科学系,2-ND Baumanskaya Str。8俄罗斯科学院理论与实验生物物理学研究所,俄罗斯街3号,142290,俄罗斯Pushchino; bruskov_vi@rambler.ru 9南俄罗斯土壤生育研究所,346493波斯安诺夫卡,俄罗斯10个国家纳米技术中心(Nanotec)国家科学技术发展局(NSTDA),111,111,Phahonyotin Rd,Klong Luang 12120,Thailand; nuttaporn@nanotec.or.th *通信:s_makariy@rambler.ru
头足类动物的眼睛是收敛进化的一个众所周知的例子,类似于脊椎动物的眼睛。尽管头足动物和脊椎动物表现出相似的眼睛形式和功能,但它们在视觉起源和结构上有所不同。由于其高度集中的神经系统,较短的生命周期和特定的摄像头型眼睛,可导致脊椎动物的收敛,这是其进化和发育研究中的良好模型系统。含镜头的眼睛代表了简单眼睛的显着改善,并通过收敛机制,各种镜片和含有多样的结晶的角膜演变而来。晶状体晶状体的多样性和分类型特异性表明了结晶蛋白作用的收敛进化。先前的研究集中在晶体蛋白的形态,个体发育和系统发育分析上,以了解含有透镜的眼睛的演变。然而,关于O. o. o. o. o. o. g。使用章鱼小调的胚胎分期系统作为模型系统,我们通过免疫组织化学,腓罗染色和三维结构研究了十五个基因组和眼睛的结构。我们还获得了与结晶蛋白相关的基因(i。e。,a - ,s-和w -crystallin)来自O. minor的转录组数据。基于这些基因的随后的分子系统发育分析揭示了三个基因类别之间的不同差异模式,并进一步提出了支持分类群特异性融合进化趋势的证据。我们通过发育阶段的原位杂交分析了结晶蛋白基因的表达模式。所有结晶蛋白基因通常在睫状体的小扁豆细胞中表达。在头足动物中发现的A-晶状体蛋白也在镜头的外围区域表达,包括
近年来,逻辑器件的量产技术已经发展到 3nm 技术节点[1]。未来,英特尔、三星、台积电将继续利用 2nm 技术节点的新技术,如环栅场效应晶体管 (GAAFET) [2,3]、埋入式电源线 (BPR) [4–8],来优化逻辑器件的功耗、性能、面积和成本 (PPAC)。然而,横向器件的微缩越来越困难,流片成本已令各大设计公司难以承受。同时,垂直器件将成为未来 DRAM 器件中 4F2 单元晶体管的有竞争力的候选者 [9–13]。关于垂直器件的研究报道很多,大致可分为两条路线。“自下而上”路线利用金属纳米粒子诱导催化,实现垂直纳米线沟道的生长 [14,15]。然而该路线存在金属元素问题,如金污染,与标准CMOS工艺不兼容。另外,通过光刻和刻蚀工艺“自上而下”制作垂直晶体管器件的方法已被三星和IBM报道[16,17]。然而该路线也存在一些问题,例如器件栅极长度和沟道厚度难以精确控制,并且该路线中栅极无法与垂直器件的源/漏对齐。为了解决上述问题,提出了基于SiGe沟道的垂直夹层环绕栅极(GAA)场效应晶体管(VSAFET),其在栅极和源/漏之间具有自对准结构[18–21]。最近,垂直C形沟道纳米片
2在能源材料中表征运输现象的方法部,helmholtz-Zentrum柏林材料和Energie GmbH,Hahn-Meitner-Platz 1,14109柏林,德国柏林3席3席部薄膜设备的椅子技术,高效率和半教导机构技术研究所10587柏林,德国4部门能源材料的部门结构和动力学,赫尔姆霍尔茨 - 泽特鲁姆柏林材料和能源GMBH,Hahn-Meitner-Platz 1,14109柏林,德国5号,柏林5柏林5物理与天文学研究所柏林技术大学物理学,Hardenbergstraße,36,10623柏林,德国7 PVCOMB,Helmholtz-Zentrum柏林柏林材料和能量GmbH,Schwarzschildstraße3,12489 Berlin,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 23 24 26 27 28 29 28 29 30 31 32 33 33 34 33 34 33 37 37 38 39 40 41 41 42 43 43 43 44 45 46 47 47 49 49 49 49 51 51 51 51 51 52 54 54 54 54 55 56 57 57 58 59 60 60 60 60 60