图 2 :(A) DZT 与 Dr DXPS 晶体结构(PDBID:2O1X)的顶级对接姿势。通过直接去除共结晶的 ThDP 制备 38 ApoDr DXPS,并在 Mg 2+ 存在下进行对接(本文其他对接操作相同)。(B)DZT 对 Dr DXPS 的抑制模式研究以及 DZT 对 Mt DXPS 和 H304A 突变体的剂量反应曲线。颜色代码:参考条件:紫色;变化的 [ThDP]:绿色;变化的 [PYR]:蓝色;变化的 [ D -GAP]:红色。(C)ThDP 和 DZT 的药效团视图。颜色代码:C 骨架:DZT:浅蓝色;ThDP:洋红色;His304(Dr DXPS):灰色;His296(Mt DXPS):棕色。表面:疏水位点:绿色;亲水位点:红色。(D)Dr DXPS (WT)、Dr DXPS (H304A) 和 Mt DXPS 的动力学表征(见图 S1 中的曲线)。(E)化合物 1 与 Dr DXPS 与 His304 相互作用的顶级对接姿势。(F)化合物 2 与 Dr DXPS 与 H304 相互作用的顶级对接姿势。本文中的所有对接研究均使用软件 LeadIT 44 进行;图 2C 使用 MOE 45 生成;图 2A、2E 和 2F 使用 Poseview 生成。46
与等效性手性系统相比,日光流混合物结晶的易度性被通常利用以产生小分子的晶体。然而,生物大分子(例如DNA和蛋白质)是天然手性的,因此,可用的手性空间组有限范围会阻碍这种分子的结晶。在过去的15年中启发性的工作表明,蛋白质的消极混合物是蛋白质化学合成的令人印象深刻的进步,确实可以提高蛋白质结晶实验的成功率。最近,将外消旋结晶方法扩展到包括核酸,作为确定对映射DNA晶体结构的可能有助于。在这里,报告的发现表明,收益可能会超出这一点。描述了DNA序列D(CCCGGG)的两个外表面晶体结构,发现它们折叠成A形DNA。这种形式与固态中手性等效物所采用的Z形式DNA构象有所不同,这表明种族群的使用也可能有利于新构象的出现。重要的是,外星人混合物在固态中形成与手性等效物不同的固态相互作用(包括形成了外围的伪螺旋形成),这表明利用外消毒DNA混合物可以为精确的自组装纳米材料和纳米结构设计提供新的可能性。
产生 X 射线的第一步是通过 25-35 kV 的大电位差加速电子。当电子撞击钼靶时,它们会通过称为轫致辐射(断裂辐射)的过程减速。当小质量带电粒子(例如电子)经过大质量带电粒子(例如钼原子核)附近时,就会产生 X 射线。电子通过多次散射原子核而快速减速,从而导致发射多条 X 射线,在极少数情况下,当电子将其所有动能都交给单个原子核时,会发射出一条高能 X 射线。最后一个过程对应于 X 射线能谱的终点能量,这可通过查看图 2 中所示的光谱左端来观察。钼表面(阳极)与入射电子束成一定角度,以利于在特定方向产生 X 射线。图 2 显示了钼靶的能量谱。距离其产生点不远处是一个准直管,它允许一条狭窄的水平 X 射线带通过,到达结晶的 NaCl 靶。当 NaCl 靶(搁置在测角仪上)相对于入射 X 射线的角度倾斜刚好正确(θ)时,就会发生建设性干涉,并且在位于 2 θ 角的盖革-穆勒管中可以观察到增加的计数率(计数/秒)。如图 3 所示。
智力和创造力是不同的能力,还是依赖相同的认知和神经系统?我们试图通过结合fMRI数据的机器学习和认知能力数据的潜在可变建模(n 186)(n 186)来量化智力和创造性认知在大脑和行为中重叠的程度,他们完成了一系列的智力和创造性思维任务。该研究具有三个分析目标:(a)评估特定智力方面(例如流体和结晶的智力)的贡献,以及对创造力的一般智力(即,思维独创性),(b)模拟全脑功能连接性网络,以预测智力方面和创造性的网络,并(c)量化这些预测的网络,以量化这些预测的网络。使用结构方程建模,我们发现了智力方面和创造力之间的中等到大相关性,以及一般智能与创造力之间的巨大相关性(r .63)。使用基于Connectome的预测建模,我们发现,预测智能方面的功能性大脑网络与预测创意能力的网络重叠,尤其是在执行控制网络的前额叶皮层中。值得注意的是,一个预测通用情报的网络与一个预测创造力的网络共享了46%的功能连接,包括连接执行控制以及显着性/腹侧注意网络的连接,使情报和创造性思维依赖于类似的神经和认知系统。
虽然近年来对有机热电聚合物的研究正在取得显着进步,但实现具有热电特性的单一聚合物材料和下一代自动可穿戴电子产品的可拉伸性是一项挑战的任务,并且仍然是尚未探索的领域。采用“共轭断裂器”的一种新的分子工程概念,以将可拉伸性赋予高度结晶的二基吡咯吡咯(DPP)基于基于的聚合物。A hexacyclic diindenothieno[2,3- b ]thiophene (DITT) unit, with two 4-octyloxyphenyl groups substituted at the tetrahedral sp3-carbon bridges, is selected to function as the conjugated breaker that can sterically hinder intermolecular packing to reduce polymers' crystallinity.因此,通过将晶体DPP单元与DITT共轭断路器聚合来开发一系列的供体 - 受体随机共聚物。通过控制单体DPP/DITT比率,DITT30达到了晶体/无定形区域的最佳平衡,在FECL 3后,表现出高达12.5μwm -1 K -2的特殊功率因子(PF)的价值;而,同时显示能够承受超过100%的应变的能力。更为明智的是,掺杂的Ditt30纤维具有出色的机械耐力,在200个伸展/释放周期以50%的应变为50%后,保留了其初始PF值的80%。这项研究标志着具有具有特殊热电特性的本质上可拉伸聚合物的开创性成就。
我们通过在透射电子显微镜中使用选定的区域电子衍射(SAED)研究了各种独立的AFM膜(type-a,b,c)的结晶度,请参见补充图S1.1A,C,e。A型,B膜是在SAO涂层的α-AL 2 O 3和SRTIO 3底物上生长的未封闭的α-FE 2 O 3层,而C型C膜是缓冲α-FE 2 O 2 O 2 O 3层在SAO涂层的Srtio Srtio 3 sibtrates上生长的3层。缓冲液由老挝和STO层制成(有关详细信息,请参见方法)。SAED模式证实A型膜中的AFM层是多晶的,而B型膜中的AFM层是单个晶体。type-C的缓冲膜不仅是结晶的,而且由于与缓冲液中的老挝层的不匹配,还具有Moiré图案。此外,通过POL图分析和𝜙 -Scans证实了缓冲膜中各个层的外延生长,在补充图S1.2中进行了说明。最后,在补充图S1.1b,d,f中显示的光学显微镜图像表明,未固定的A型,B膜通常会构成更多的裂纹,从而导致较小的完整膜区域。相比之下,缓冲型C膜通常形成较大的面积样品,裂纹较少,这对于实现强弯曲的AFM结构以探索磁结构效应很重要。
摘要:二维(2D)半导体过渡 - 金属二甲藻元化(TMDC)是激动人心的兴奋性物理和下一代电子设备的令人兴奋的平台,从而提出了强烈的需求,以了解其增长,兴奋剂和异质结构。尽管在固体源(SS-)和金属 - 有机化学蒸气沉积(MOCVD)中取得了显着进展,但仍需要进一步优化,以增强高度结晶的2D TMDC,并具有受控的掺杂。在这里,我们报告了一种混合MOCVD生长法,该方法结合了液相金属前体沉积和蒸气相机 - chalcogen的递送,以利用MOCVD和SS-CVD的优势。使用我们的混合方法,我们证明了WS 2的生长,具有从分离的单晶结构域到各种底物的连续单层膜的可调形态,包括蓝宝石,SIO 2和AU。这些WS 2膜表现出狭窄的中性激子光致发光线的宽度,低至27-28 MeV和室温迁移率最高34-36 cm 2 v-1 s-1。通过对液体前体组成的简单修改,我们证明了V掺杂WS 2,Mo X W 1-X S 2合金和面内WS 2 - MOS 2异质结构的生长。这项工作提出了一种有效的方法,可以在实验室规模上满足各种TMDC合成需求。关键字:金属 - 有机化学蒸气沉积,2D半导体生长,过渡金属二甲构代化,掺杂,合金,WS 2,MOS 2,MOS 2
头足类动物的眼睛是收敛进化的一个众所周知的例子,类似于脊椎动物的眼睛。尽管头足动物和脊椎动物表现出相似的眼睛形式和功能,但它们在视觉起源和结构上有所不同。由于其高度集中的神经系统,较短的生命周期和特定的摄像头型眼睛,可导致脊椎动物的收敛,这是其进化和发育研究中的良好模型系统。含镜头的眼睛代表了简单眼睛的显着改善,并通过收敛机制,各种镜片和含有多样的结晶的角膜演变而来。晶状体晶状体的多样性和分类型特异性表明了结晶蛋白作用的收敛进化。先前的研究集中在晶体蛋白的形态,个体发育和系统发育分析上,以了解含有透镜的眼睛的演变。然而,关于O. o. o. o. o. o. g。使用章鱼小调的胚胎分期系统作为模型系统,我们通过免疫组织化学,腓罗染色和三维结构研究了十五个基因组和眼睛的结构。我们还获得了与结晶蛋白相关的基因(i。e。,a - ,s-和w -crystallin)来自O. minor的转录组数据。基于这些基因的随后的分子系统发育分析揭示了三个基因类别之间的不同差异模式,并进一步提出了支持分类群特异性融合进化趋势的证据。我们通过发育阶段的原位杂交分析了结晶蛋白基因的表达模式。所有结晶蛋白基因通常在睫状体的小扁豆细胞中表达。在头足动物中发现的A-晶状体蛋白也在镜头的外围区域表达,包括
当今IT环境的典型数据处理,检索和转移[1]促使新一代研究人员寻求具有增强光子应用功能的创新材料。非线性光学(NLO)是这些短语所指的主题。当功能强大的电磁场与材料相互作用时,它会产生与原始场相同的相位,频率和振幅不同的新字段[2]。这种现象正在集中非线性光学元件。某些材料暴露在光线时会发生变化,并取决于方向,温度,光波长等因素。应用程序,例如数据处理,光子学,THZ生成,激光放大器等应用程序[3,4]现在很大程度上依赖于这些材料。研究人员正在逐步专注于寻找新型的NLO材料,以满足对此类物质的不断增长的需求。基于其组成的非线性光学材料有三种类型:有机,无机和半有机物[5]。无机材料具有良好的机械和热稳定性,但非线性值较低[6],而有机材料具有有效的非线性特性,但具有明显的机械和热不稳定性。化学工程方法可用于改变有机非线性材料的特征,以满足各种业务的不断发展的需求[7]。响应增强性能的需求,出现了新的材料,称为半有机NLO材料。除了出色的机械和热稳定性外,它们还包括显着的非线性。各向异性材料是晶体固体,表现出对其特征的定向依赖性。对于NLO行为,有必要在必须是非中心对称的空间群中结晶的非线性材料。
II型超导体的磁场(H) - 温度(t)相位二克由混合状态支配,只要固定涡旋[1],该状态就可以保留零耗散。在二维(2D)限制中,情况可能会大不相同,因为促进的热和量子波动破坏了导管的顺序并引起耗散。值得注意的是,在许多薄膜超导体中,在垂直磁场中观察到的有限电阻比正常状态值低得多,该磁场一直持续到零温度的极限[2-4]。这种异常金属状态(AMS)的存在与本地化缩放理论所提出的不存在2D金属性的主张相矛盾[5]。在过去的几十年中的研究导致了这样的观点,即该状态可以被视为失败的超导体[6],但其起源仍然无法解决[7-17]。高度结晶的2D超导体非常适合研究AMS,因为它们具有出色的清洁剂[18]。通常可以看到磁场诱导的超导金属转变[19-24],而低场耗散状态势必是金属的。但是,受分钟数量的限制,Crys-Talline 2D超导体中AMS的实验探针尚未超过DC传输,并且尚未进行新技术。这些结果指向玻色症Versatile probes are available for films with much larger size, revealing a particle-hole symmetry arising from uncondensed Cooper pairs based on vanishing Hall response [ 25 – 28 ], absence of cyclotron resonance mea- sured by microwave spectroscopy [ 29 ], and charge-2 e ( e is the elementary charge) quantum oscillation in nano- patterned films [ 26 , 28 ].