摘要:目前的工作旨在评估六个日记硫衍生物作为潜在的腐蚀剂。将这些衍生物与Dapsone(4,4'-二氨基二苯基磺基酮)进行比较,这是一种常见的麻风病抗生素,已被证明可以抵抗酸性培养基在酸性培养基中具有超过90%的酸性培养基的腐蚀。由于所有研究的化合物都具有共同的分子主链(二苯基硫),因此将Dapsone视为评估其余部分效率的参考化合物。在这方面,检查了两个结构因子,即(i)通过左右的2组替换日记硫的s原子的效果,(ii)芳基部分中引入电子吸引电子或电子贡献组的效果。使用两种计算化学方法来实现目标:密度功能理论(DFT)和Monto Carlo(MC)模拟。首先,使用B3LYP/6-311+G(D,P)模型化学来计算研究分子的量子化学描述及其几何和电子结构。此外,使用MC模拟研究了测试分子的吸附模式。通常,吸附过程有利于偶极矩较低的分子。基于吸附能结果,预计五座日记硫衍生物将与dapsone相比,起作用是更好的腐蚀抑制剂。
排斥性费米克哈伯德模型(FHM)对于我们对强相关材料中电子行为的理解至关重要。在半纤维上,其基态的特征是抗铁磁相,它让人联想到高温丘脑超导体中的母体状态。将掺杂剂引入抗磁铁中,费米子哈伯德(FH)系统被认为会产生各种异国情调的量子阶段,包括条纹顺序,伪模和D-Wave超导性。然而,尽管在FHM的量子模拟中取得了显着进步,但在大规模量子模拟器中实现了低温抗铁磁相变的效果仍然难以捉摸。在这次演讲中,我将在三个维度上介绍低温排斥FH系统的最新进展,其中包括大约800,000个位点的均匀光学晶格中的锂6原子。使用旋转敏感的bragg衍射,我们测量系统的自旋结构因子(SSF)。我们通过调整相互作用强度,温度和掺杂浓度来观察SSF中的分歧,以在相变的各自临界值中,这与Heisenberg普遍性类别中的幂律相一致。我们的结果成功证明了FHM中的抗铁磁相变,为探索FHM的低温相图铺平了道路。
抽象线性缩放关系(LSR)和Brønsted - Evans - Polanyi(BEP)或过渡状态缩放(TSS)关系有助于电子能量的预测。然而,温度效应和指数前通常被视为跨金属表面和同源系列的常数。振动缩放关系(VSR)提供了确定此类参数的方法。过渡状态振动缩放关系(TSVSR)在局部最小值和AH X(A = C,N,O)表面扩散的局部最小值状态与BEP关系相关,并扩展到热化学性质缩放。使用密度功能理论(DFT),我们将TSVSR扩展到过渡金属表面上的AH X脱氢反应,将局部最小值的振动模式与过渡状态相关。我们首先通过使用Slater-Koster结构因子并通过晶体轨道重叠种群(COOP)分析(COOP)分析(COOP)分析和能量重叠积分积分来预测TSS关系的斜率。此外,我们发现了通用的热化学性质缩放,从而使熵和温度校正能够估算到同源系列中的焓。我们证明了固有电子屏障低的反应中的显着振动校正,并且在金属和AH X吸附物的简单脱氢反应的固定前差异很大。
摘要:阴离子交换膜为更昂贵的质子交换膜燃料电池提供了有希望的替代品。但是,对阴离子交换膜中的氢氧化离子电导率知之甚少。在本文中,我们使用经典的分子动力学模拟来研究由乙烯 - 二乙烯基乙酸(EVA)制备的四种不同聚乙烯膜的结构和离子传输性能。我们检查了膜的微观结构,发现与具有广泛空腔分布的膜相比,腔尺寸分布狭窄的聚合物在氢氧化离子周围的水分子堆积更紧。我们计算水合膜的结构因子,并找到1和4 nm -1之间的峰,这是这些材料中离子簇的特征。我们估计水和氢氧化物离子的自扩散系数,发现水分子在所有系统中的扩散量高于氢氧化离子。氢氧化物扩散的趋势与实验电导率测量很好地对齐。对于具有广泛空腔的系统,水促进了通过车辆运输的氢氧化物扩散,并且在空腔狭窄的系统中,观察到离子跳和车辆运输。通过计算离子 - 离子和离子 - 溶剂相关性通过Onsager传输系数框架来量化这一点。关键字:聚合物膜,离子交换,分子动力学模拟,氢氧化物传输,离子体■简介
我们采用了最近开发的功能性重归其化组方法,用于自旋系统,即所谓的Pseudo Majorana功能重归其化组,以研究有限温度下的三维自旋1 /2 Heisenberg模型。我们在简单的立方和pyrochlore晶格上研究未施工和沮丧的海森堡系统。将我们的结果与其他量子多体技术进行了比较,我们将降低了我们方法的高定量精度。,对于未铺设的类似于立方晶格的抗fiferromagnet排序,从一环数据的有限尺寸缩放中获得的温度偏离了误差控制的量子蒙特卡洛的结果约为5%,我们确定了我们的数据一致性,使我们的数据与既定的关键指标n cytermention n dimementialsientialsentions n dimensiential Heissen nisery Heisenberysensen concection concejeity concection concection。由于PMFRG的产生与QMC相吻合,但在系统沮丧时仍然适用,接下来,我们将Pyrochlore Heisenberg Antyromagnet视为一种典型的磁性磁性系统,并限制了我们两层静态同质性易感性与其他方法的近乎完美的一致性。我们进一步研究了由于量子和热闪光的结果,在自旋结构因子中的捏合点扩大,并在外推极极限t→0中进行了有限宽度。虽然向更高循环订单的扩展虽然有系统地改善了我们对磁性无序系统的方法,但在存在磁性或磁或者存在下增加ℓ时,我们也讨论了微妙的方法。总体而言,伪主要的功能重新归一化组是在量子磁性中具有强大的多体技术,并具有许多可能的未来应用。
X Na 2 S-(100- X)GES 2玻璃的性质,代表了全固定电池的有希望的系统,可以从各种实验和理论技术中进行彻底研究。离子传导是根据成分的函数测量的。它揭示了一种具有低Na含量的阈值组成的阈值构图。相比之下,温度演化表明典型的Arrhenius行为指示NA动作通过相邻位点之间的跳跃实现。三个特定组成(0%,33%和66%Na 2 s)的特征是X射线衍射和基于密度功能的分子动力学的组合。测量和计算不同的结构特性,例如结构因子,成对分布函数,角度分布,配位数和邻居分布。与实验的比较揭示了在真实和相互空间中相当好的一致性。短期顺序被发现由由GES 4/2四面体制成的基本网络(ge和s的配位数约为4和2),这些网络在添加的Na添加后逐渐解散,这也会导致环结构的分解。na的配位数是松散定义的,尤其是在高NA含量下。还发现了碱模型的硅酸盐的典型特征,例如存在类似通道的动力学,键长的分布在GE和桥接或非桥接硫之间是不同的,具有n键硫的ge tetrahedra的分布q n,以及在网络中低温下的na键(ge)和Na Dynamics的网络中的低温。然而,与这种原型玻璃不同,硫代钠钠含有同质的GE-GE键,这些键是特异性的GE硫酸盐,并导致孤立的(ge 2 S 6)6⊖阴离子高Na含量。
指定多体量子系统状态所需的参数数量随其成分数量呈指数增长。这一事实使得在计算上难以准确描述动力学并在微观层面上表征状态。在本论文中,我们采用量子场论概念来实验性地表征远离平衡态的旋量玻色气体。首先,我们引入相关概念,这些概念为新兴宏观现象提供有效描述,其公式与超冷原子系统的能力相匹配。在我们的实验研究中,我们在准一维陷阱几何中采用 87 Rb 旋量玻色-爱因斯坦凝聚态。我们通过测量自旋自由度的波动来探索相图作为有效二次塞曼位移的函数,并确定三个不同的相。利用这些知识,我们研究了在分离不同相的量子相变中发生瞬时淬灭后发生的不稳定性。这些不稳定性使我们能够以高度可控的方式将系统驱动到远离平衡状态。在淬火后的很长一段时间内,我们观察到与非热不动点的出现相关的通用动力学。横向自旋角取向的结构因子具有在时间和空间中的重新缩放,具有通用指数以及通用缩放函数。利用实验控制,我们探测了这种现象对初始条件细节的不敏感性。复值横向自旋场的空间分辨快照允许提取单粒子不可约关联函数,这是量子有效作用的基石。我们发现在高度占据状态下出现了低动量的 4 顶点的强烈抑制。引入的概念与提出的实验适用性为研究多体系统在其演化的所有阶段提供了新方法:从初始不稳定性和远离平衡的瞬态现象到最终的热化。
是由最近发现的高t c双层镍超导体LA 3 ni 2 O 7的动机,我们通过使用Lanczos方法对不同的电子密度n进行了全面研究BiLayer 2×2×2群集。我们还采用随机相近似来量化第一个磁不稳定性,而哈伯德耦合强度的提高也有所不同。基于自旋结构因子s(q),我们在固定的hund耦合下定义的平面中获得了丰富的磁相图,其中u是Hubbard的强度和W带宽。我们观察到许多状态,例如A-AFM,条纹,G-AFM和C-AFM。在半填充,n = 2(每个Ni位点,对应于n = 16个电子)时,规范的近方交互作用导致具有抗firomagnetic Couplings的稳健的G-AFM状态(π,π,π,π),均带有内在的层和层之间。通过增加或降低电子密度,从“半空”和“半满”机制中出现铁磁趋势,从而导致许多其他有趣的磁趋势。另外,与半完成相比,在孔或电子掺杂区域中,自旋旋转相关性在较弱。n = 1。5(或n = 12),密度对应于La 3 Ni 2 O 7,我们获得了“条纹2”基态(抗铁磁耦合在一个平面方向上,另一个面积为非磁磁耦合,另一个耦合的铁磁耦合,沿Z AxiS沿2×2×2×2 Cluster沿Z AxiS沿Z Axiis沿Z AxiS)。另外,我们获得了沿Z轴的AFM耦合要比XY平面中的磁耦合要强得多。此外,具有q /π=(0。< /div>的状态6,0。随机相近似的计算具有不同的n的结果,即使这两种技术都是基于完全不同的程序,但n的结果与兰斯佐斯的结果非常相似。6,1)在我们的RPA计算中发现了靠近电子期波形,通过将填充略微降低到n = 1,可以找到。25,可能负责在实验中观察到的电子期SDW。我们的预测可以通过化学掺杂LA 3 Ni 2 O 7来测试。
是由最近发现的高t c双层镍超导体LA 3 ni 2 O 7的动机,我们使用Lanczos方法对不同的电子密度n进行了固定研究的2×2×2群集。我们还采用随机相近似来量化第一个磁不稳定性,而哈伯德耦合强度也会增加,也有所不同。基于自旋结构因子s(q),我们在固定的hund耦合下,在由n和u/w定义的平面中获得了丰富的磁相图,在固定的hund耦合下,u是哈伯德强度和带宽。我们观察到许多状态,例如A-AFM,条纹,G-AFM和C-AFM。对于半填充n = 2(每个ni位点两个电子,对应于n = 16个电子),规范的superexchange相互作用会导致稳健的G-AFM状态(π,π,π),在平面中和层之间具有抗磁磁耦合。通过增加或降低电子密度,从“半空”和“半满”机制中出现铁磁趋势,从而导致许多其他有趣的磁趋势。此外,与半填充相比,自旋旋转相关性在孔或电子掺杂区域中都较弱。n = 1。5(或n = 12),密度对应于La 3 ni 2 O 7,我们获得了“条纹2”基态(抗fiferromagnetic耦合在一个平面方向上,另一个平面磁耦合,另一个耦合的铁磁耦合,在2×2×2×2×2 cluster中沿Z -axis沿Z -axis沿Z -axis的抗铁磁耦合)。另外,我们获得了沿Z轴的AFM耦合要比XY平面中的磁耦合要强得多。同时,具有q/π=的状态(0。6,0。随机相近似的计算具有不同的n的结果,即使这两种技术都是基于完全不同的程序,但n的结果与兰斯佐斯的结果非常相似。6,1)在我们的RPA计算中发现了靠近电子期波形,通过将填充略微降低到n = 1,可以找到。25,可能负责在实验中观察到的电子期SDW。我们的预测可以通过化学掺杂LA 3 Ni 2 O 7来测试。
超明显点模式可以通过超均匀缩放指数α> 0进行分类,该指数α> 0,该指数符合结构因子s(k)的幂律缩放行为,这是波数k。| K |在起源附近,例如s(k)〜| K | α在s(k)随着k连续变化为k→0。在本文中,我们表明可传播性是确定s(k)不连续的准膜系统的有效方法,并由一组密集的bragg峰组成。它已在[Phys。修订版e 104,054102(2021)],对于有限α的培养基,可以将过剩可传播性s(∞)-s(t)的长时间行为拟合到形式t - (d-α) / 2的幂定律中,在其中d是空间维度,以准确提取α,以使α准确提取α。我们首先将准二极管和极限 - 周期点模式转换为两相介质,通过将它们映射到相同的非重叠磁盘的包装上,其中与磁盘的空间内部代表一个相位,并且在其外部空间代表了第二阶段。然后,我们计算包装的光谱密度〜χv(k),并最终计算其多余的散布性的长期行为。特别是我们表明,多余的传播性可用于准确提取一维(1D)极限 - 周期性倍加倍链(α= 1)和1D Quasicrystalline fibonacci链(α= 3)至0。02%的分析已知的确切结果。此外,我们获得α= 5的值。97±0。06对于二维penrose瓷砖,并提出了合理的理论参数,强烈表明α完全等于六个。我们还表明,由于此处检查的结构的自相似性,可以截断用于计算散布性并获得α准确值的散射信息的小k区域,并且与未截断的情况下的偏差很小,该案例随着系统尺寸的增加而降低。这强烈表明,可以从适度尺寸的有限样品中获得α的良好估计。此处描述的方法提供了一个简单而通用的过程,可以准确表征Quasrystalline中存在的大规模翻译顺序,并在任何自相似的空间维度中都具有极限 - 周期介质。此外,从编码〜χV(k)中编码的这些两相介质中提取的散射信息可用于估计其物理性质,例如它们的有效动态介电常数,有效的动态弹性常数和流动性。
