随着芯片技术的发展,摩尔定律在微电子工业中的运用可能接近极限,三维集成电路(3D-IC)技术可以克服摩尔定律的限制,具有高集成度、高性能和低功耗的优势[1-3]。因此,3D IC中的芯片堆叠引起了电子工业的广泛关注,不同的键合技术被开发出来以保证芯片(或晶圆)的垂直堆叠,其中采用焊料的TLP键合已被提出作为实现低温键合和高温服务的有效方法。Talebanpour [4]采用Sn3.0Ag0.5Cu作为3D结构中的互连材料,经260 ℃回流温度和时效后获得了全IMC(Cu6Sn5/Cu3Sn)。储[5]研究了低温稳态瞬态液相(TLP)键合Cu/Sn/Cu和Ni/Sn/Ni焊点,分别检测到Cu 6 Sn 5 、Cu 3 Sn、Ni 3 Sn 4 、Ni 3 Sn 2 。陈[6]研究了基于TLP键合的Cu/Sn3.5Ag/Cu和Cu/Sn3.5Ag/Cu15Zn,焊点中检测到了Cu 6 Sn 5和Cu 6 (Sn, Zn) 5 ,研究发现Cu 6 Sn 5 由于其晶粒结构均一且脆性大,会降低键合可靠性;而Zn能有效地将均一晶粒结构修改为交错结构,从而提高键合可靠性。在3D IC结构中,完整IMC焊点在热循环载荷下的可靠性一直是重要的研究方向,有限元程序可以用来计算IMC焊点的应力-应变响应和疲劳寿命。田 [7] 研究了三维IMC接头的应力分析和结构优化
(1) 模态叠加法通过叠加船体振动模态响应得到的应力分量来计算结构应力响应。(2) 根据船体振动分析选择水弹性模拟中要使用的特征模态。(3) 对于将要进行疲劳强度评估的单元,应获得相对于所选特征模态的应力变换矩阵。(4) 应力时间序列是通过结合水弹性模拟计算出的模态响应时间序列和从 (3) 获得的应力变换矩阵来计算的。(5) 通常,模态叠加中使用的特征模态数越多,结构响应的精度就越高。然而,由于包括局部变形在内的高阶模态会对结构响应产生影响,因此模态叠加法的特征模态需要经过验证后谨慎选择。
3.6.2 裂纹扩展................................................................................................................59 3.6.3 临界裂纹长度或失效...............................................................................................61 3.7 安全寿命和故障安全定义及设计理念........................................................................62 3.7.1 安全寿命设计.............................................................................................................63 3.7.2 故障安全设计和损伤容限分析.........................................................................................64 3.7.2.1 安全寿命和故障安全设计的简要示例.........................................................................64 3.8 焊接和裂纹起始点的介绍....................................................................................................66 3.8.1 残余应力.............................................................................................................................67 3.8.2 焊接缺陷.............................................................................................................................68 3.8.3 应力集中.............................................................................................................................68 3.8.4 钢和合金中的裂纹起始点....................................................................................................69铝................................................................................69 3.8.5 铝制零件的补焊....................................................................................70 3.9 高速船用新型铝合金及焊接技术........................................................70 3.9.1 新型海洋级铝合金,牌号 5383.........................................................................70 3.9.1.1 5383 的疲劳强度.........................................................................................................72 3.9.2 新型海洋级铝合金,牌号 RA7108.........................................................................74 3.9.3 新型海洋级铝合金 5059.........................................................................................76 3.9.4 搅拌摩擦焊接.........................................................................................................77 3.10 参考文献.........................................................................................................................79 4.DNV 和其他行业疲劳分析标准.........................................................................................115 5.1 DNV 高速船疲劳分析分类说明 30.9 ................................116 5.2 协助船舶设计师的其他行业标准.....................................................118高速铝船的疲劳设计................................................................................................................81 4.1 Palmgren-Miner 累积损伤疲劳评估....................................................................................82 4.2 确定要分析的细节................................................................................................................84 4.3 加载历史的开发................................................................................................................86 4.3.1 船长和速度对高速船加载历史的影响.......................................................................87 4.3.2 用于船舶加载历史的概率分布....................................................................................89 4.3.3 雨流和储层循环计数法....................................................................................................90 4.3.4 雨流循环计数法.............................................................................................................91 4.3.5 储层循环计数法.............................................................................................................91 4.4 应力直方图的开发.....................................................................................................................92 4.4.1 使用频谱分析方法开发应力直方图.....................................................................................93 4.5 应力计算和应力集中................................................................................................95 4.5.1 行业规范中的设计应力...............................................................................................95 4.5.2 关于应力的进一步讨论..............................................................................................96 4.5.2.1 结构中的名义应力.........................................................................................................97 4.5.2.2 结构应力.........................................................................................................................98 4.5.2.3 热点应力.........................................................................................................................100 4.5.2.4 缺口应力.........................................................................................................................100 4.5.2.5 焊接对应力的影响....................................................................................................101 4.5.2.6 制造缺陷及其对名义应力的影响....................................................................................102 4.6 确定适当的 S/N 曲线.....................................................................................................103 4.6.1 程序.....................................................................................................................104 4.7替代应力直方图方法................................................................................................112 4.8 参考文献....................................................................................................................113 5.