复杂的磁力机械耦合,该耦合控制了磁性elastomers(MRES)的材料响应(MRES)需要计算工具来协助设计过程。计算模型通常基于有限元框架,这些元素框架通常简化并理想化磁性源和相关的磁性边界条件(BCS)。但是,这些简化可能会导致实际物质行为与建模的简化,即使在定性层面也是如此。在这项工作中,我们提供了一项有关磁性BCS影响的全面研究,并证明了在整个材料结构建模策略中考虑它们的重要性。为此,我们实施了一个磁性机械框架,以模拟由理想化的远场均匀磁性源,永久磁铁,线圈系统和带有两个铁杆的电磁体产生的磁场下的软磁和硬磁MR。根据所使用的磁设置,结果在计算的局部磁截图和磁场中揭示了显着的异质性。基于材料和结构贡献的详细讨论为将来的作品提供了强大,严格且必要的建模途径。
目的本文旨在确定精益和弹性实践对医疗保健领域供应链管理的可持续性的影响。正在分析可持续性(经济,环境和社会),精益和韧性的因素之间的关系,以相同彼此的依赖。将环境和社会方面与经济考虑(称为三底线(TBL))的整合已与一般和供应链管理(SCM)(SCM)的管理决策相关。此过程将有助于医疗保健专业人员做出准确的决策,以专注于影响医疗保健供应链管理可持续性的最重要因素。方法论,医疗保健部门及其供应链被选为精益和韧性的实践,事实证明在该行业中有效。确定精益和弹性供应链实践之间的关系及其对可持续性三个不同维度的影响,使用了基于解释性结构建模(ISM)方法的方法。发现结果显示了精益和弹性实践之间的协同作用。前一个实践是后一种实践的推动力。因此,精益实践,尤其是使用电子数据互换,对供应链可持续性产生了直接和间接的影响。研究局限性研究了医疗保健部门的精益与弹性实践之间的关系。以前有可能被忽略。ISM技术用于实现这一目标。不同的部门可能会产生不同的结果,因为整个部门之间的关键因素可能有所不同,并且每个过程中实施的方法也可能有所不同。环境,法规,公司规模和竞争因各个部门而异,因此本研究的结果无法概括。原创性本研究通过考虑每个范式中的大量实践来更好地反映实践之间的现有关系,从而做出了重大贡献。总共确定了16种精益和敏捷的SC实践和15项可持续性措施,并使用解释性结构建模(ISM)研究了关系。ISM具有将心理模型转换为结构化的层次模型的力量,而使用ISM对精益和弹性供应链实践之间的当前关系及其对可持续性的影响是对文献的独特贡献。此外,已经与几位医疗保健专家一起提供了有关各种参数的观点。该数据已输入ISM模型,以帮助专家做出更好的决策。通过单个系统框架建立多种精益和弹性策略与可持续性措施之间的联系是本研究的主要贡献。将三个可持续性维度放入ISM模型中。
本研究分析了过去十年来电子竞技收入排名中国家电子竞技收入的变化,以找出可能决定一个国家在国际电子竞技领域成功的社会和经济决定因素。在这项研究中,一个国家电子竞技成功的指标考虑了该国电子竞技运动员每年获得的奖金数量、世界排名和电子竞技运动员总数。提出并验证了关于一系列宏观经济指标以及社会总体稳定水平特征对该国电子竞技发展可能产生影响的假设。使用 VOSviewer 工具包构建了 Scopus 上发表的电子竞技研究的科学格局(按流行的研究主题、研究网络领导者的地理位置和科学搜索的演变)。通过典型分析,揭示了“经济发展-社会发展-电子竞技发展”链中的成对关系,以及具有强大群体内和群体间关系的决定因素;并通过结构建模将这些关系量化为总体。计算结果表明,一个国家的经济稳定性比社会稳定性对其在国际电子竞技领域的成功影响更大。经济发展最相关的指标是
人工智能(AI)已在磁性共振成像(DMRI)和其他神经影像模式的领域取得了显着进步。这些技术已应用于各个领域,例如图像重建,降解,检测和去除工件,分割,组织微观结构建模,大脑连接性分析和诊断支持。最新的AI算法有可能利用DMRI中的优化技术来通过生物物理模型提高灵敏度和推断。虽然在大脑微观结构中使用AI有可能彻底改变我们研究大脑和了解脑部疾病的方式,但我们需要意识到可以进一步推进这一领域的陷阱和新兴的最佳实践。此外,由于DMRI扫描依赖于Q空间几何形状的采样,因此它为数据工程的创造力留出了空间,以最大程度地提高先前的推断。的固有几何形状的利用已被证明可以提高一般推断质量,并且可能在识别病理差异方面更可靠。我们使用这些统一特征来承认并分类了基于AI的DMRI方法。本文还强调并审查了通过数据驱动技术涉及组织微观结构估算的一般实践和陷阱,并提供了在其上构建的方向。
随着时间的流逝,房屋如何以及为什么如何致密?这种增长的影响是什么?什么样的限制会影响其改变的潜力?这项研究探讨了建立形式的变化和致密化,从19世纪住房计划的渐进转型CitéOuvrière在法国东部的Mulhouse提供了历史证据。这项颗粒状纵向形态学研究使用历史规划应用和图像来绘制165年期间1253户单户房屋的外部体积转换。该研究将档案工作与三维(3D)结构建模和高级密度方法结合在一起,以记录,可视化,分析和评估微观层的致密过程。统计计算跟踪致密过程,而码头工具分析了对不同建筑类型和整个社区的开放空间消耗的影响。结果突出了七种类型的转换,受到七个物理变化驱动因素的影响。致密化是通过构建强化或情节联合/细分表现出来的,其程度取决于非建造空间的消耗程度。这些取决于原始设计施加的社会经济,法律和身体约束。
乙型肝炎病毒(HCV)是一种血液传播的病原体,影响了全球约2亿个人。 针对丙型肝炎病毒的免疫接种旨在增强T细胞反应,并被确定为成功的抗病毒疗法的关键组成部分。 然而,尽管疫苗的进展令人满意,但试图介导人们临床相关的抗HCV活动的尝试主要失败。 在这项研究中,我们使用了一系列免疫信息方法来设计一种基于多焦肽的疫苗针对HCV,通过强调来自病毒蛋白NS5B的6种保守表位。 使用结构建模和表位 - 主持互动分析,检查了潜在的表位与GPGPG接头之间的可能抗原结合。 将辅助(β-防御素)引入N末端,以增加疫苗构建体的免疫原性。 分子动力学模拟揭示了疫苗的最稳定结构。 设计的疫苗本质上是潜在的抗原性,并且可以与受体TLR2和TLR3形成稳定且显着的相互作用。 还对疫苗构建体进行了硅内克隆,这证实了其在载体中的表达效率。 的发现表明,设计的多能量疫苗具有巨大的临床前和临床研究潜力,这是解决与HCV感染相关的问题的重要一步。乙型肝炎病毒(HCV)是一种血液传播的病原体,影响了全球约2亿个人。针对丙型肝炎病毒的免疫接种旨在增强T细胞反应,并被确定为成功的抗病毒疗法的关键组成部分。然而,尽管疫苗的进展令人满意,但试图介导人们临床相关的抗HCV活动的尝试主要失败。在这项研究中,我们使用了一系列免疫信息方法来设计一种基于多焦肽的疫苗针对HCV,通过强调来自病毒蛋白NS5B的6种保守表位。使用结构建模和表位 - 主持互动分析,检查了潜在的表位与GPGPG接头之间的可能抗原结合。将辅助(β-防御素)引入N末端,以增加疫苗构建体的免疫原性。分子动力学模拟揭示了疫苗的最稳定结构。设计的疫苗本质上是潜在的抗原性,并且可以与受体TLR2和TLR3形成稳定且显着的相互作用。还对疫苗构建体进行了硅内克隆,这证实了其在载体中的表达效率。的发现表明,设计的多能量疫苗具有巨大的临床前和临床研究潜力,这是解决与HCV感染相关的问题的重要一步。
近几十年来,已经探索了折纸以帮助设计工程结构。这些结构涵盖了多个尺度,已被证明用于航空航天,超材料,生物医学,机器人和建筑应用等各个领域。从传统上讲,折纸或可部署的结构是由手,电动机或气动执行器驱动的,这可能会导致沉重或笨重的结构。另一方面,有效材料对外部刺激的响应重新构成,消除了对外部机械载荷和笨重的致动系统的需求。因此,近年来,与可部署结构合并的活性材料已经显示出对轻重,可编程折纸的远程致动的希望。在这篇评论中,有效材料,例如形状记忆聚合物(SMP)和合金(SMA),水凝胶,液晶弹性体(LCES),磁性软材料(MSMS)以及共价适应网络(CAN)聚合物,它们的驱动机制,以及它们如何用于现有的origanami和这些结构的使用方式,以及它们是可用的结构。此外,突出显示了构建活性折纸的最新制造方法。总结了折纸的现有结构建模策略,用于描述活跃材料的构造模型以及主动折纸研究的最大挑战和未来方向。
2-3 1.4 数字系统 4 5 4-5 1.5 逻辑门 3 8 6-7 2.2 布尔方程 4 12 8-9 2.3 布尔代数 4 16 10 2.4 从逻辑到门 2 18 第 2 单元:组合逻辑设计: 11 2.1 简介 1 19 12 2.5 多级组合逻辑 2 21 13 2.6 X 和 Z 2 23 14-15 2.7 卡诺图 3 26 16 2.8 组合构建块 2 28 17 2.9 时序 2 30 18 4.1 HDL:简介 2 32 19-20 4.2 组合逻辑 2 34 21 4.3结构建模 3 37 22 4.7.1 数据类型 2 39 第 3 单元:时序逻辑设计: 23 3.1 简介 2 41 24-26 3.2 锁存器和触发器 5 46 27-28 3.3 同步逻辑设计 3 49 29-30 3.4 有限状态机 4 53 31-33 3.5 时序逻辑的时序 5 58 34 3.6 并行性 2 60 第 4 单元:硬件描述语言 2: 35-37 4.4 时序逻辑 5 65 38-40 4.5 更多组合逻辑 5 70 41-42 4.6 有限状态机 4 74 43-44 4.8 参数化模块 4 78 45-46 4.9 测试台 4 82 第 5 单元:数字构建模块:
摘要:近年来,协作机器人已成为行业4.0的主要动力之一。与工业机器人相比,自动化的导向车辆(AGV)更具生产力,灵活,多功能和更安全。它们在智能工厂被用于运输货物。今天,许多工业机器人的生产商和开发商都进入了AGV领域。但是,他们在设计AGV系统(例如设计过程的复杂性和不连续性)以及定义分散系统决策的困难方面面临着一些挑战。在本文中,我们提出了一种基于群体机器人技术的新的集成设计方法,以应对功能,物理和软件集成的挑战。此方法包括两个阶段:一个自上而下的阶段,从需求规范到使用系统建模语言(SYSML)的功能和结构建模;在机器人操作系统(ROS)中进行模型集成和实现的自下而上阶段。选择了自动导向车辆(AGV)系统的案例研究以验证我们的设计方法,并说明了其对AGV的有效设计的贡献。这种提出的方法的新颖性是SYSML和ROS的结合,以解决AGV系统的不同设计级别之间的可追溯性管理,以实现功能,物理和软件集成。
我们正在寻找两个博士生来开发新的高能量阴极材料。第一个位置的重点是实验工作(综合和表征),第二个位置是计算材料设计。博士学位1:学生将使用水电/溶剂/热/机械化学方法进行靶向阴极材料的合成,并进行全面的表征(包括加拿大光源的操作数)和电化学分析。先前的高级表征方法经验和电化学分析方法将是一种资产。博士学位2:学生将采用计算材料设计工作,采用原子和电子结构建模方法来评估提高锂离子存储和扩散特性的先进掺杂策略。以前在计算材料研究方面的经验以及对电化学能源材料的熟悉度将是一种资产。MSC的化学,物理,化学工程或材料科学与工程领域的毕业生都鼓励采用相关背景。也可以考虑出色的BSC/Beng毕业生。如果有兴趣,请发送(下面给出电子邮件)您的简历和成绩单(非官方副本很好)向DeMopoulos教授(对于位置1)或Bevan教授(对于位置2)。电子邮件:george.demopoulos@mcgill.ca; kirk.bevan@mcgill.ca