自 20 世纪 90 年代初以来,空客通过“修理设计批准表”(RAS)表格(参见结构修理手册第 51-11-14 章)支持对修理行动或损害津贴的批准。自 1996 年起,空客被法国民航总局(DGAC)授予在其设计组织批准(DOA)范围内批准小修设计的特权。2003 年,该特权扩展到大修设计。2004 年,DOA 从 DGAC 转移到欧洲航空安全局(EASA),因此现在的批准是根据 EASA DOA 颁发的。本文将仅描述 EASA 监管框架内的修理设计批准流程。在每个签署《国际民用航空公约》(又称《芝加哥公约》)的国家中都可以找到监管框架的等效性。
................................................ . ................................................. ................................................. ...... 45
与传统的有线 SHM 系统相比,基于无线传感器网络 (WSN) 的 SHM 系统在成本、准确性和监测可靠性方面有显著改善。然而,由于传感器节点的资源受限,实时处理大量感测到的振动数据是一项挑战。现有的数据处理机制是集中式的,使用云或远程服务器来分析数据以表征桥梁的状态,即健康或受损。这些方法对于有线 SHM 系统是可行的,然而,在 WSN 中传输大量数据集已被发现是艰巨的。在本文中,我们提出了一种名为“网络内边缘损伤检测 (INDDE)”的机制,该机制从原始加速度测量中提取与桥梁健康状况相对应的统计特征,并使用它们来训练概率模型,即估计多元高斯分布的概率密度函数 (PDF)。训练后的模型有助于实时识别从桥梁未知状况中收集的新数据点的异常行为。每个边缘设备根据其各自的训练模型将桥梁状况分类为部署区域周围的“健康”或“受损”。实验结果展示了约 96-100% 的损伤检测准确率,其优势是无需从传感器节点传输数据到云端进行处理。
飞机结构受到撞击是常见现象;鸟类、异物碎片或餐饮卡车对复合材料飞机结构的意外撞击可能会导致表面凹痕以及相关的表面下分层。如果严重程度足够,分层会降低复合材料的抗压强度,使其低于原始设计的极限强度。如果无法通过目视检查发现大于几乎不可见的撞击损伤 (BVID) 值的表面凹痕,则可能导致飞机在飞行时无法检测到分层,强度也低于原始值。飞机结构必须承受服务载荷,同时包含太小而无法在检查期间检测到的损伤。为了支持复合材料飞机损伤容限检查计划,必须了解凹痕大小和形状对检测概率的影响。这些信息类似于金属飞机结构中表面断裂裂纹的检测概率 (POD) 的成熟测量。
第 2 章。通过物理引导机器学习进行结构损伤识别:一种将模式识别与有限元模型更新相结合的方法。..................。。。。。。。。。。。。。。。。。。。。。。。。9 2.1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9
• 尽管有许多创新,但在针对患者量身定制的与 TBI 相关的神经和认知障碍相关的结构和功能基础的表征方面取得的进展仍然不令人满意,并且认知功能障碍的神经生理标志物与 TBI 结构损伤之间的关系尚未得到令人满意的阐明• 3D Slicer 为探索和量化 TBI 提供了一套强大且无与伦比的工具
................................................................................................................................................................ 45
- 这些部位是否受到足够高的应力。因此,显然需要对材料进行预防性调查,以验证其实际损伤状态[9]。 2 无损控制 无损控制技术 (NDT) 是最好的缺陷评估方法之一 [10],它可以识别第一阶段结构损伤,从而防止结构失效并减少经济损失 [11]。该技术的优点之一是远程控制,可降低运营成本、停机时间等... [12] [13]。事实证明 [14] [15],材料缺陷(如微裂纹、分层、夹杂物)是非线性的来源。为了利用这一特性,使用超声波的非线性无损检测 (NNDT) 已在 NDT 中建立 [16] [17]。已经证明 [18] [19] [20],NNDT 在检测小损伤方面比传统的线性技术 [21] [22] 具有更高的灵敏度。事实上,非线性指标具有更宽的动态范围,通常比线性参数高出十倍 [23] [24]。因此可以得出结论,非线性参数对缺陷检测的灵敏度远高于线性参数 [25]。超声波已成为无损检测技术的有效选择。3 非线性超声波超声波对结构损伤高度敏感,向各个方向传播,传播速度快,
中轴型脊柱关节炎表现为一种慢性炎症性疾病,主要影响骶髂关节和脊柱。虽然慢性背痛和脊柱僵硬是典型的初始症状,但外周(即肌腱炎、关节炎和指炎)和骨骼外(即葡萄膜炎、炎症性肠病和牛皮癣)表现也很常见。及时准确的诊断具有挑战性,依赖于结合临床、实验室(HLA-B27 阳性)和影像学发现(例如骨盆 X 光片上的结构损伤和骶髂关节 MRI 上的骨髓水肿)来识别临床模式。国际脊柱关节炎评估协会对中轴型脊柱关节炎的分类标准被广泛用于研究,并有助于更好地了解中轴型脊柱关节炎的格式塔。持续的疾病活动性(主要通过中轴型脊柱关节炎疾病活动性评分进行评估)会导致不可逆的结构损伤和功能障碍。治疗包括非药物治疗(例如教育、戒烟、运动、物理治疗)和药物治疗。非甾体抗炎药仍是一线药物治疗,而肿瘤坏死因子、IL-17 和 Janus 激酶抑制剂被视为二线治疗。未来的进展有望提高疾病意识,促进早期和准确的诊断,优化疾病管理,并提高中轴型脊柱关节炎患者的整体生活质量。
2.1 引言................................................................................................................................................ 14 2.2 结构验证试验............................................................................................................................... 14 2.2.1 定义........................................................................................................................................ 14 2.2.2 结构验证试验的应用......................................................................................................................... 18 2.2.2.1 结构完整性和残余机械性能....................................................................................... 21 2.2.3 验证试验载荷的应用.................................................................................................................... 22 2.2.4 新型验证试验方法中的问题.................................................................................................... 24 2.2.5 结构验证试验评审的讨论和结论.................................................................................................... 25 2.3 复合材料结构损伤.................................................................................................................... 27 2.3.1 引言........................................................................................................................................ 27 2.3.2 损伤和损伤机制.................................................................................................................... 27 2.3.2.1 简介 ................................................................................................................................ 27 2.3.2.2 复合材料 T 型接头的分层损伤 .............................................................................................. 28 2.3.2.3 孔隙率和空隙 ................................................................................................................ 32 2.3.3 损伤容限、剩余强度和寿命预测 ............................................................................................. 36 2.3.4 案例研究:T 型加筋复合材料板(T 型接头) ............................................................................. 38 2.3.4.1 简介 ................................................................................................................................ 38 2.3.4.2 粘合结构 ............................................................................................................................. 40 2.3.4.3 T 型接头设计和失效模式 ................................................................................................ 41 2.3.5 复合材料结构损伤总结 ............................................................................................................. 43 2.4 适用于验证测试的 NDT 技术 ............................................................................................. 44 2.4.1 简介......................................................................................................................................... 44 2.4.2 声发射检测...................................................................................................................... 46 2.4.3 表面应变和位移映射............................................................................................................... 48 2.4.4 振动分析......................................................................................................................................... 51 2.4.5 伴随 PT 的 NDT 技术总结......................................................................................................... 51 2.5 模态分析......................................................................................................................................... 51 2.5.1 简介......................................................................................................................................... 51 2.5.2 频率响应......................................................................................................................................... 53 2.5.2.1 简介......................................................................................................................................... 53 2.5.2.2 损伤检测质量......................................................................................................................... 55 2.5.2.3 FR 技术的应用......................................................................................................................... 58 2.5.2.4 频率响应技术的结论和未来研究......................................................................................... 61 2.5.3 随机减量................................................................................................................................ 61........................................... 55 2.5.2.3 频率响应技术的应用 ...................................................................................................... 58 2.5.2.4 频率响应技术的结论和未来研究 .............................................................................. 61 2.5.3 随机减量 ................................................................................................................................ 61........................................... 55 2.5.2.3 频率响应技术的应用 ...................................................................................................... 58 2.5.2.4 频率响应技术的结论和未来研究 .............................................................................. 61 2.5.3 随机减量 ................................................................................................................................ 61