- Branimir LELA(克罗地亚) – 主席 - Sonja JOZIĆ(克罗地亚) – 副主席 - Dražen ŽIVKOVIĆ(克罗地亚) - Dražen BAJIĆ(克罗地亚) - Goran CUKOR(克罗地亚) - Lidija ĆURKOVIĆ(克罗地亚) - Ivan JANDRLIĆ(克罗地亚) - Nikola GJELDUM (克罗地亚) - Mirko GOJIĆ (克罗地亚) - Krešimir GRILEC (克罗地亚) - Senka GUDIĆ (克罗地亚) - Fuad HADŽIKADUNIĆ (波斯尼亚和黑塞哥维那) - Dario ILJKIĆ (克罗地亚) - Zlatko JANKOSKI (克罗地亚) - Jaroslav JERZ (斯洛伐克) - 佐兰尤尔科维 (克罗地亚) - 埃罗尔·卡姆 (土耳其) - 达尔科·兰德克 (克罗地亚) - 坎迪达·马尔恰 (葡萄牙) - 德拉甘·马林科维 (德国) - 阿莱什·纳戈德 (斯洛文尼亚) - 佐兰·潘迪洛夫 (马其顿) - 姆拉登·佩里尼 (克罗地亚) - 马西莫·罗甘特 (意大利) - 利亚内罗尔多(克罗地亚) - 尼古拉·斯托梅诺夫(保加利亚) - 阿姆拉·塔利-契克米什(波斯尼亚和黑塞哥维那) - 马特伊·韦森雅克(斯洛文尼亚) - 拉迪斯拉夫·弗尔萨洛维(克罗地亚) - 伊维察·韦扎(克罗地亚) - 阿纳托利·扎夫多维耶夫(乌克兰) - 武卡斯吉尔兹(波兰)-武卡斯·瓦尔古拉 (波兰) - 卢卡·塞伦特 (英国) - 瓦尼亚·卡尔达斯·德·索萨 (巴西) - 伊万·皮瓦克 (克罗地亚) - 泽利科·彭加 (克罗地亚) - 阿奇姆·坎普克 (德国) - 法布里奇奥·菲奥里 (意大利) - 保罗·门古奇 (意大利) - 哈桑AVDUŠINOVIĆ(波斯尼亚和黑塞哥维那)
我们的第一期纳米材料特刊引起了极大的兴趣,这表明纳米材料是一个多么重要的研究课题。因此,为了继续研究这个课题,我们决定推出新一期的特刊,其中也专门介绍纳米结构在各个研究领域的最新进展。在这期中,我们将再次专注于发表描述纳米材料(如纳米粉末、纳米陶瓷、玻璃、胶体、复合材料、薄膜或生物材料)的新颖和有趣特性的文章。我们鼓励您发送理论和实验手稿,展示纳米尺寸如何影响材料的物理特性。文章可以包括物理、化学、材料工程或生物学领域的研究成果,只要它们关注不同类型的纳米结构及其应用。
摘要:天然生物聚合物已成为准备生物降解食品包装的关键参与者。然而,生物聚合物通常是高度亲水性的,这在与水相互作用相关的屏障特性方面施加了限制。在这里,我们使用多层设计增强了生物基包装的屏障特性,其中每一层都显示一个互补的屏障函数。氧气,水蒸气和紫外线屏障。我们首先设计了几种包含CNF和Carnauba蜡的设计。在其中,我们在包含三层的组装中获得了低水蒸气的渗透率,即CNF/Wax/CNF,其中蜡作为连续层存在。然后,我们在几丁质纳米纤维(LPCHNF)上掺入了一层木质素纳米颗粒,以在维持紫外线的同时引入完全屏障,同时保持纤维透明度。包括CNF/Wax/LPCHNF的多层设计启用了高氧(OTR为3±1 cm 3/m 2·Day)和水蒸气(WVTR为6±1 g/m 2·天),以50%的相对湿度为50%。它也对石油穿透也有效。氧气渗透性受纤维素和几丁质纳米纤维的紧密网络的控制,而通过组装的水蒸气散析则由连续的蜡层调节。最后,我们展示了我们的完全可再生包装材料,以保存商业饼干(干粮)的质地。我们的材料显示出与原始包装相似的功能,该功能由合成聚合物组成。关键字:纤维素纳米纤维,蜡,木质素颗粒,分层生物聚合物,可持续纤维,生物基包装■简介
b“全球对化石燃料枯竭和相关环境恶化的担忧刺激了人们对可再生和清洁能源的探索和利用进行了大量研究。能量存储和能量转换是当今可持续和绿色能源科学中最重要的两项技术,并在日常应用中引起了极大的关注。迄今为止,大量新型纳米材料已被广泛探索用于这些与能源相关的领域,然而,每种材料都有自己的问题,限制了它们满足高性能能量存储和转换设备要求的能力。为了满足未来与能源相关的应用的高技术要求,迫切需要开发先进的功能材料。在此,本期特刊旨在涵盖原创研究成果、简短通讯和多篇评论,内容涉及先进异质结构材料的合理设计和可控合成的创新方法及其在能源相关领域(如可充电电池、超级电容器和催化等)的吸引人的应用。”
Noemi Gallucci,Maryam Hmoudah,EugénieMartinez,Amjad El-Qanni,Martino Di Serio等。使用CEO2纳米结构材料对布洛芬的光降解:反应动力学,建模和热力学。环境化学工程杂志,2022,10(3),pp.107866。10.1016/j.jece.2022.107866。CEA-04565951
Yasamin Ziai、Seyed Shahrooz Zargarian、Chiara Rinoldi、Paweł Nakielski、Antonella Sola、Massimiliano Lanzi、Yen Bach Truong 和 Filippo Pierini,用于脑机接口的导电聚合物基纳米结构材料,WIREs Nanomed Nanobiotechnol.,2023 年,e1895,p. 1-33。
a Université Paris, CEA, 91191 GF-SUR-YVETTE, France B Nuclear Energy Agency, 46 quai A. Le Gallo, 92100, Boulogne Billancourt,france c Paul Scherrer Institute, Ch-5232 Villgenry 83415, USA E CIEMAT, Avenida Complutense 22, 28020 Madrid, Spain F Kit, Institute for Pulsed Power and Microwovetechnology, Hermann-Von-helmholtz-platz 1, germanpenstein-leofen, 545, USA H University of Oxford, Department of Materials, Parks Road, Oxford Ox1 3PH, United Kingdom I Jaea, 4002, Narita-cho, Oarai-Machi, gigashi-ibaraki-gun, Ibaraki-ken, Japan J Ocas Center, Institute of Nuclear Materials Science, Boeretang 200, 2400 MOL, Belgium L School of Physics, Pekking University, Beijing, China
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
本文研究了纳米结构材料在可持续结构中的使用,以增强寿命并最大程度地减少生态影响。该研究使用先进的材料分析方法(包括机械应力测试和电子显微镜)研究了结构框架中重要的纳米复合材料,纳米硅,纳米粘土和碳纳米管。的发现表明,相对于传统的建筑材料,这些纳米结构可将结构完整性提高约40%,将使用寿命延长约35%,并将材料生产的能源消耗降低约20%。材料通过在高压力条件下降低30%的降解并增强耐腐蚀性的降解来表现出韧性。通过减少资源消耗并增强基础设施的弹性,这些事态发展标志着在可持续建筑方面取得了重大进展。本文通过主张在建筑材料中使用纳米技术来提高更广泛的可持续性目标,并强调纳米结构材料在建筑的未来中的重要性。该研究结果对在工业中广泛使用纳米技术的广泛使用,这可能促进了现代建筑方法中生态保护与结构完整性之间的平衡。
摘要。由于复合材料在强度、刚度和密度方面可以进行定制,因此在航空航天领域是一种宝贵的商品。但是,复合材料也会随着时间的推移而变质,就像其他材料一样,特别是在太空等恶劣条件下。飞机环境中温度突然变化引起的热降解会导致复合材料的尺寸变化、开裂甚至分解,这些降解问题可能会影响复合材料在航空航天中的应用。在本研究中,对碳/酚醛复合材料进行了热重分析 (TGA),作为纤维使用平纹碳纤维 (Kyoto - 碳),作为基质使用 ARMC-551-RN 酚醛树脂。此外,测试方法参考 ASTM E1131-08 标准。热重成分分析测试方法。最终,工程师希望通过使用 TGA 分析来了解用于航天器部件的碳/酚醛复合材料的热特性和稳定性,从而改善航天器的设计、可靠性和严酷太空任务的安全性。