Ad-Dab'bagh, Y., Einarson, D., Lyttelton, O., Muehlboeck, J.-S., Mok, K., Ivanov, O., Vincent, RD, Lepage, C., Lerch, J., Fombonne, E., & Evans, AC (2006)。CIVET 图像处理环境:用于解剖神经影像学研究的全自动综合流程。在人类脑映射组织第 12 届年会上发表的论文中。Albouy, P., Caclin, A., Norman-Haignere, SV, Lévêque, Y., Peretz, I., Tillmann, B., & Zatorre, RJ (2019)。解码与任务相关的功能性脑成像数据以识别发育障碍:以先天性失歌症为例。神经科学前沿,13。 https://doi.org/10. 3389/fnins.2019.01165 Amari, S., & Wu, S. (1999). 通过修改核函数改进支持向量机分类器。神经网络,12 (6),783 – 789。https:// doi.org/10.1016/S0893-6080(99)00032-5 Amunts, K., Schlaug, G., Jancke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). 运动皮层和手部运动
量子信息技术为提高设备相干性,对材料和界面的质量提出了严格的要求。然而,人们对顺磁杂质的化学结构和来源知之甚少,这些杂质会产生通量/电荷噪声,导致脆弱量子态的退相干,阻碍大规模量子计算的发展。在这里,我们对量子器件的常见基板-Al 2 O 3 进行高磁场电子顺磁共振 (HFEPR) 和超精细多自旋光谱分析。在无定形形式下,-Al 2 O 3 也不可避免地存在于铝基超导电路和量子比特中。检测到的顺磁中心位于表面之内,具有明确但高度复杂的结构,延伸到多个氢、铝和氧原子。建模表明,这些自由基可能源自许多金属氧化物中常见的活性氧化学。我们讨论了 EPR 光谱如何有益于寻找表面钝化和退相干缓解策略。