我们证明了非型型超级级别相变的出现和在腔量子量子电动力学系统中的新型多政治性,其中两级原子与两个窃窃私语模式微地位的两种反向传播模式相互作用。腔体以一定角度的速度旋转,并通过单向参数抽水χ22非线性挤压。腔旋转和方向挤压的组合导致非reciprocal的一阶和二阶超级相变。这些过渡不需要Ultrastrong Atom-Field耦合,并且可以通过外部泵场轻松控制。通过对哈密顿系统系统的完整量子描述,我们在相图中确定了两种类型的多个智力点,这两种点都表现出可控的非交流点。这些结果为在光结构系统中对超级级过渡和多政治行为的全面操纵打开了新的门,并在工程各种集成的非认定量子设备方面进行了潜在应用。
摘要:自组织原理在新兴的计算哲学领域具有根本意义。自组织系统已在科学和哲学的各个领域得到描述,包括物理学、神经科学、生物学和医学、生态学和社会学。虽然系统架构及其一般用途可能取决于特定领域的概念和定义,但大脑系统中明确确定了自组织的(至少)七个关键特性:1)模块化连接,2)无监督学习,3)自适应能力,4)功能弹性,5)功能可塑性,6)从局部到全局的功能组织,以及 7)动态系统增长。本文根据神经生物学、认知神经科学和自适应共振理论 (ART) 以及物理学的见解对这些特性进行了定义,以表明自组织在最小化结构系统复杂性的同时实现了稳定性和功能可塑性。本文讨论了一个基于实证研究的具体示例,以说明模块化、自适应学习和动态网络增长如何为人类握力控制提供稳定而可塑的体感表征。提出了对机器人“强”人工智能设计的启示。
摘要 ASME V&V 指南建议验证过程应包括同步实施模拟和物理测试。这已被广泛接受为使用专门为支持模型验证过程而设计的实验测量值进行验证过程的适当方法。然而,数字孪生的出现使得人们可以选择考虑其他流程进行模型验证。数字孪生由系统的计算模型组成,通常在设计过程中生成和验证,结合制造过程中进行的质量保证测量、有关服务条件的信息、健康监测数据和维护检查期间进行的测量。数字孪生与物理系统的报废评估相结合,代表了有关系统生命周期性能的大量信息和知识。这些知识在后续系统的设计中具有巨大的潜在价值,包括提供历史测量数据的前景,以支持下一代系统模型的验证过程。本文回顾了这种潜力对结构系统计算模型验证流程的影响,并提出了一种新的流程图。新流程图具有一些关键的新颖功能,例如包含历史数据,建模凭证,验证指标和决策
微/纳米级激光器遍及整个可见光谱,尤其是红色,绿色和蓝色的光谱,不仅对于各种光学设备,而且在可见的色彩通信,多色荧光感应中以及波长的多重效率上都具有重要的应用。尽管采用了多种方法,片上白光发射,甚至是红色,绿色和蓝色的多色激光器,但仍遇到了微型纳米结构中的巨大挑战。在此,使用化学蒸气沉积方法成功制备了CDS X SE 1-X,CD和ZnS微型Tripod结构。这些微丝脚架的微型发光(μ-PL)光谱和PL映射分别在630、508和460 nm处揭示了各种排放。此外,基于这些组成可调的三脚架的白光排放是通过终端耦合结构系统实现的。此外,从这些微丝脚架的三个腿上清楚地观察到可调激光器的室温模式,低阈值约为48.39μjcm-2,高质量系数为1227.3。基于微脚架的激光器的实现可能为高度集成的光子电路和通信提供了一种创新的方式。
低矮建筑物上的风荷载被认为是一种危险,需要不断获取知识才能有效缓解。当前的美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆层压力)提供了详细的风设计荷载。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,当前的烟囱和水箱指南将扩展到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。由于典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力,因此使用较高的阵风影响因子是合理的。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响因子。但是,由于缺乏对屋顶设备的研究或风洞研究,尚未确定任何特定的阵风影响因子值。
低矮建筑物上的风荷载被认为是一种危险,需要不断获取相关知识才能有效缓解。现行美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆盖层压力)提供了详细的风荷载设计。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,烟囱和水箱的现行指导方针将扩大到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。使用更高的阵风影响系数很容易证明是合理的,因为典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响系数。然而,由于缺乏对屋顶设备的研究或风洞研究,阵风影响系数的具体值尚未确定。
低矮建筑物上的风荷载被认为是一种危险,需要不断获取相关知识才能有效缓解。现行美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆盖层压力)提供了详细的风荷载设计。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,烟囱和水箱的现行指导方针将扩大到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。使用更高的阵风影响系数很容易证明是合理的,因为典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响系数。然而,由于缺乏对屋顶设备的研究或风洞研究,阵风影响系数的具体值尚未确定。
低矮建筑物上的风荷载被认为是一种危险,需要不断获取相关知识才能有效缓解。现行美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆盖层压力)提供了详细的风荷载设计。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,烟囱和水箱的现行指导方针将扩大到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。使用更高的阵风影响系数很容易证明是合理的,因为典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响系数。然而,由于缺乏对屋顶设备的研究或风洞研究,阵风影响系数的任何具体值尚未确定。
摘要。结构系统可能会由于动态激发和惯性而产生负矩。复合金属甲板平板通常设计用于承受正矩,并在底部得到加固,顶部的热增强最小。然而,在动态冲击负载下,上部的固定加固可能会导致这些平板在负矩下失败。因此,本研究调查了在自由下降重量冲击负载下复合金属甲板板的性能。该研究由两个主要部分组成:基于收集到的数据,通过NITE元素模拟分析和培训机器生成数据。LS-DYNA商业软件用于分析具有三个参数的165个模型:平板长度,前锋重量和前锋速度。在机器学习组件中,有限元建模(FEM)结果用于训练机器并准确预测这些板的性能。报告的结果是根据最大负矩,最大DE分解以及平板的弹性和塑性行为报告的。该研究表明,在高前锋速度下,标本在60至80 kN的范围内经历了最终的内部负矩。
折纸起源于一种古老的艺术形式,将扁平的薄表面变成各种复杂、精美的 3D 物体。如今,这种转变超越了艺术的范畴,为跨领域的工程应用提供了非破坏性和与尺度无关的抽象概念框架,可能对教育、科学和技术领域产生影响。例如,越来越多的建筑材料和结构基于折纸原理,从而产生了与以前在自然或工程系统中发现的特性不同的独特特性。为了传播这些概念,本入门指南全面概述了折纸工程的主要原理和要素,包括理论基础、模拟工具、制造技术和需要非标准设置的测试协议。我们重点介绍了涉及可展开结构、超材料、机器人、医疗设备和可编程物质的应用,以实现振动控制、机械计算和形状变形等功能。我们确定了该领域面临的挑战,包括有限刚度、面板厚度调节、与常规机械测试设备的不兼容性、不可展开图案的制造、对缺陷的敏感性以及在感兴趣的尺度上识别相关物理。我们进一步展望了折纸工程的未来,旨在实现下一代多功能材料和结构系统。