1996 年 1 月 1 日之后发布的报告通常可通过 OSTI.GOV 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000 (1-800-553-6847) TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ 美国能源部 (DOE) 员工、DOE 承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学和技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 https://www.osti.gov/
功能性能意味着满足对汽车结构部件的各种要求。必须特别注意安全要求,但封装方面在轻量化汽车设计中也起着重要作用。第 3 章提供了使用铝进行汽车设计的一些基本指南。在本章中,将更详细地讨论铝结构和部件的功能性能。第 5 章将特别关注成本方面。虽然铝合金和产品在汽车结构中的应用如今已在许多车型中得到广泛认可,但它们在碰撞、疲劳和腐蚀情况下的性能仍然引起汽车工程界部分人士的质疑。另一方面,全铝和部分铝车身结构的长期经验毫无疑问地证明,设计合理的车身结构能够满足所有的生产和服务要求。设计铝结构和部件以使其在使用过程中具有最佳和可预测的性能需要有关以下方面的特定知识和经验:结构部件(例如空心型材)和组装结构的结构刚度、稳定性和疲劳行为,结构部件和模块的碰撞行为(能量吸收和故障机制),以及铝合金结构和混合物的腐蚀性能
然而,对于较大的立方体卫星和改进型一次性运载火箭 (EELV) 次级有效载荷适配器 (ESPA) 小型卫星,由铝合金制成的传统加工组件仍然有其主要结构用途。次级结构(例如太阳能电池板、隔热毯和子系统)连接到主要结构。它们独立存在,几乎不传递关键结构载荷。当主要结构发生故障时,任务将发生灾难性故障。虽然次级结构故障通常不会影响航天器的完整性,但它会对整个任务产生重大影响。这些结构类别可以作为一个很好的参考,但对于特别受体积限制的小型航天器来说可能很难区分。对于小型卫星来说尤其如此,因为这些航天器的功能可能与全尺寸总线相似,但分配器或部署环提供的体积成为制约因素。因此,结构部件必须尽可能提高体积效率。主要结构部件需要发挥多种功能,以最大限度地提高体积效率。这些功能可能包括热管理、辐射屏蔽、压力控制,甚至应变驱动。这些功能通常分配给大型航天器的二级结构部件。
航天领域在运载火箭和卫星的建造中广泛使用粘合剂粘合。与许多其他领域的情况一样,粘合剂在这些应用中的使用与复合材料的使用密切相关。虽然在太空竞赛开始时,运载火箭和卫星主要由金属制成,但复合材料整体结构部件在 20 世纪 70 年代开始成为常态,取代了许多(但不是全部)金属结构。这种使用是由于环氧树脂与玻璃和硼纤维的结合,这提高了复合材料的强度和稳定性,尽管其使用仍然仅限于整流罩和支架等次级结构。在 20 世纪 80 年代,碳纤维的使用开始成为常态,并开启了复合材料在主要结构部件、整体结构或夹层板中的使用。如今,许多火箭包括完全粘合的复合材料级,用作储罐,将推进剂冷却至低温。其中一些应用如图 1.13 所示。
LISI AEROSPACE 为全球最大的航空航天业参与者设计和生产种类繁多、具有高附加值的装配系统、液压配件和金属结构部件
关于 CSIR-SERC CSIR-结构工程研究中心 (CSIR- SERC),钦奈是印度科学与工业研究理事会 (CSIR) 下属的国家实验室之一。CSIR-SERC 拥有用于分析、设计和测试结构和结构部件的卓越设施和专业知识。中央和州政府以及公共和私营部门企业正在广泛寻求 CSIR-SERC 的服务。CSIR-SERC 的科学家在许多国家和国际委员会任职,该中心在国家和国际层面被公认为结构工程领域的领先研究机构。关于课程本课程提供疲劳和断裂基本概念的必要背景知识,包括抗疲劳部件和结构的设计。研讨会为工程专业人员提供了一个熟悉疲劳和断裂力学领域最新发展的机会。本课程将重点介绍金属结构部件疲劳和断裂的实验和数值技术。课程中将涵盖的主题包括:
航空业使用的许多结构部件都是耐损伤的。耐损伤结构需要在明确规定的时间间隔内进行定期检查。由于许多结构部件很大,难以接近,也难以从检查的角度进行评估,因此最大允许裂纹尺寸通常非常大。任何耐损伤结构的操作员都不会对低于允许临界损伤的损伤感兴趣,因为这需要他停止运行系统(即飞机)进行检查和维护,而不会产生任何收入,而是产生成本。在航空相关的结构完整性领域,疲劳、环境和意外损坏起着重要作用,SHM 有很大的相互作用空间。这可以从图 1 所示的结构中看出,国际飞机维护指导小组 (MSG) 在该结构下工作。
这项任务的主要目标是建立连接热塑性复合材料的最佳实践,以减少下一代结构部件的装配时间和成本。正在制定工艺规范和指导材料,以大规模展示连接技术。
• 瞄准低风险应用以加速部署 • 继续瞄准高风险机会 • 应用机会包括(但不限于):配件、铸造替代品、阀体、结构部件、焊接件等。 • CVN 的 AM 部署将通过低风险零件生产促进未来供应商的准备 • 以下幻灯片提供了 NNS 联系信息