任务 1:调查风力涡轮机制造过程中的工艺和性能挑战(ORNL 和 NREL)。(已完成)任务 2:AM 风力涡轮机组件/工具的成本/性能分析(现有 AM 能力)。(ORNL 和 NREL)。(已完成)任务 3:风险分析和缓解策略(现有 AM 能力)。(ORNL 和 NREL)。(已完成)任务 4:风力涡轮机组件/工具的成本/性能分析、风险分析和缓解策略(即将推出的 AM 能力)。(ORNL 和 NREL)。(已发布报告:风能系统中增材制造的现状)任务 5:行业合作以改进 AM 成本/性能分析(ORNL、NREL 和 Vestas)。(已完成)任务 6:利用 AM 技术制造机舱结构骨架节点 (SN) 以进行比较分析并发布结果。(出版物待发布)
摘要:基于质谱的有限蛋白水解化学蛋白质组学方法已成为识别和分析小分子 (SM) 与其蛋白质靶标之间相互作用的有力工具。Gracilioether A (GeA) 是一种从海绵中分离出来的聚酮化合物,我们旨在利用这种策略追踪其相互作用组。DARTS(药物亲和力响应靶标稳定性)和 t-LiP-MS(靶向有限蛋白水解质谱)代表了本研究中使用的主要技术。DARTS 应用于 HeLa 细胞裂解物以识别 GeA 靶蛋白,并使用 t-LiP-MS 研究蛋白质与 GeA 结合的区域。通过使用表面等离子体共振 (SPR) 的结合研究和计算机分子对接实验,结果得到了补充。泛素羧基末端水解酶 5 (USP5) 被确定为 GeA 的一个有希望的靶点,并解释了 USP5-GeA 复合物的相互作用特征。USP5 是一种参与蛋白质代谢途径的酶,通过将降解蛋白质上的多泛素链分解为泛素单体。这种活性与不同的细胞功能有关,包括染色质结构和受体的维持、异常蛋白质的降解和致癌进展。在此基础上,这些结构信息为后续研究开辟了道路,重点是确定 Gracilioether A 的生物学潜力以及基于新结构骨架合理开发新型 USP5 抑制剂。