• 确保设施内使用的变频驱动器 (VFD) 不会导致过度的设施谐波失真是一种良好的工程实践。有关更多信息,请参阅 IEEE 519。• 如果 VFD 和受控电机之间的电缆长度超过 50 英尺,则可能需要在前几个绕组上增加电机绕组绝缘或在逆变器输出端安装 LC 滤波器。• 只要制造商的要求符合适用的电气规范,VFD 就应按照制造商的噪声接地要求接地。• 设施所有者可能需要考虑:由制造商代表启动 VFD、过流跳闸保护、临界频率锁定。• 仅对以下 VFD 安装类型下列出的 HVAC 应用安装 2 马力及以上的变频驱动器将提供规定折扣。其他 VFD 应用可能符合 Central Hudson 定制计划的资格。• 以下 HVAC VFD 应用没有资格使用此应用:o 带有入口导叶的前向曲线风扇;o 变距叶片轴流风扇; o 更换发生故障的 VFD;o 仅用于平衡恒定流量的 VFD;o 控制现有的 2 速冷却塔风扇;o 风扇或泵的 2 速控制;减轻安装过大电机的压力。• 对于冷冻水和加热泵安装,至少 75% 的泵容量必须由 2 通阀控制。• VFD 必须由自动信号控制,以响应变化的空气或水流。受控电机每年必须至少运行 2,000 小时。 • 必须随此申请提交已发布的制造商信息,以证明符合以下每个标准:o 在满载和无惯性的情况下,VFD 控制上的最短 15 毫秒穿越时间o 自动重启o 飞行重启(启动旋转电机,速度搜索)o 欠压跳闸 85% 或更低o 根据驱动马力,最低 3% 在线电抗器或等效装置(扼流圈、隔离变压器)o 满载和全速下最低 95% 驱动效率o 0.95 最小位移功率因数• 零件保修至少一年。
微处理器和新型建筑材料的发展显著优化了 LVDT 的性能、范围和拥有成本,使其成为优于其他位移技术的技术选择。如今,LVDT 传感器提供高温版本、扩展范围、更小的行程、抗辐射和其他特性,以满足更广泛行业的要求。它们甚至作为遥测系统的一部分,用于测量参数并向远程监控系统提供反馈,远程监控系统将信息存储在云中,供操作员访问或进一步处理。交流和直流版本 LVDT 有交流和直流版本。最初,LVDT 是交流操作的,不包含任何内部电子设备。因为它是一个变压器,所以 LVDT 基本上是一个交流输入/交流输出设备。它需要在初级绕组上施加交流激励电压,并在次级绕组上产生交流输出。外部信号调节器提供激励信号并测量输出。它解调低幅度交流输出并产生直流电压、电流或数字输出,供仪表、PLC 和其他控制系统使用。 (见图2)
Before the High Court, Greylag Goose argued that, in its application through s 22 in relation to a separate entity, s 14(3)(a) is to be read as providing that "[a separate entity] is not immune in a proceeding in so far as the proceeding concerns ... bankruptcy, insolvency or the winding up of a body corporate" and given that "separate entity" is defined to include "a body corporate", there is no reason why第14(3)(a)条所指的“独立实体”必须是与s 14(3)(a)所指的“身体公司”不同的实体。拒绝Greylag Goose的论点,高等法院的大多数得出的结论是,正如第14(3)(a)条所述,通过第22条的行动适用于外国的单独实体:单独的实体(例如外国国家本身)是免疫异常的对象; “团体公司”是单独实体以外的实体(就像外国本身以外的实体一样);该其他实体的周围是例外的主题。因此,该例外适用于《公司法》第5.7页的诉讼,仅当诉讼程序涉及与独立实体不同的机构机构的机构的绕组而言。
摘要:混合层流控制或 HLFC 设计是一个复杂且多学科的过程,需要从全局系统的角度彻底了解所有方面。本文的目的是介绍 HLFC 系统重要组件的初步设计,以帮助快速评估概念系统架构。这对于在系统开发的早期阶段评估可行性、系统性能和整体飞机效益非常重要。本文还讨论了有关主动 HLFC 系统设计的各种重要系统要求和问题,并介绍了各个学科之间的接口。从研究中可以强调的是,HLFC 系统的未来压缩机设计应考虑热管理方面和来自气动结构设计优化以及排水系统解决方案的额外质量流量要求。提出了一种计算集气室内累积水含量的方法,并研究了排水孔对功耗的影响。HLFC 压缩机电机的低阶热管理研究表明,超高速电机在长时间运行时绕组温升较高,需要有效的冷却解决方案。
摘要:混合层流控制或 HLFC 设计是一个复杂且多学科的过程,需要从全局系统的角度全面了解所有方面。本文的目的是介绍 HLFC 系统重要组件的初步设计,以帮助快速评估概念系统架构。这对于在系统开发的早期阶段评估可行性、系统性能和整体飞机效益非常重要。本文还讨论了主动 HLFC 系统设计的各种重要系统要求和问题,并介绍了各个学科之间的接口。从研究中可以强调的是,HLFC 系统的未来压缩机设计应考虑热管理方面和来自空气动力学结构设计优化以及排水系统解决方案的额外质量流量要求。提出了一种计算集气室内累积水含量的方法,并研究了排水孔对功耗的影响。HLFC 压缩机电机的低阶热管理研究表明,对于长时间运行的超高速电机,绕组中的温升很高,需要有效的冷却解决方案。
通过湿上载或精确的层压板外部粘结CFRP复合材料在现有RC柱表面上提供了补充的强度和刚度。CFRP限制了内部混凝土芯并增强其压缩能力。它还提供额外的剪切电阻。此外,即使在混凝土粉碎后,加固仍会继续起作用。许多先前的研究已经在实验上证明,CFRP包裹可显着增加轴向,弯曲和地震载荷下RC柱的承载能力。然而,优化参数,例如CFRP刚度,厚度,方向和布局对于最大化增强效率至关重要。已经采用了各种技术来使用FRP复合材料来限制列。最常见的方法是原位FRP包装,其中单向光纤板或编织的织物板上浸入聚合物树脂中,并在湿的上衬里过程中包裹在圆柱上,主纤维在箍方向上定向。此外,还使用了细丝绕组和预制的FRP夹克。
为了增加人类神经影像学科学的粒度,我们设计并建立了下一代7 Tesla磁共振成像扫描仪,通过在硬件中实施多个进步,以达到超高分辨率。为了改善空间编码并增加了图像信号噪声比,我们开发了一个唯一的不对称梯度线圈(200 mt m -1,900 t m -1 s -1),并使用了另外的第三层绕组。我们集成了一个具有64和96通道接收器线圈阵列的128通道接收器系统,以在大脑皮层中增强信号,同时降低G因子噪声以实现更高的加速度。16通道发射系统降低了功率沉积和改善的图像均匀性。扫描仪通常在0.35-0.45 mm的各向同性空间分辨率下进行功能成像研究,以揭示皮质层功能活性,在扩散成像中实现高角度分辨率,并减少了功能和结构成像的习惯时间。
接下来,我们假设物体与激励场(初级场)之间的相互作用是纯磁性的。这可以通过磁化铁磁体来实现,也可以通过铜盘中感应出的涡流来实现。在电子标签中,相互作用是通过一个或多个绕组的线圈建立的。请注意,由于磁场的矢量特性,这里的相互作用与方向密切相关,如果初级磁场矢量位于线圈绕组所跨越的平面内,相互作用甚至会消失。初级磁场在要检测的物体所占的区域中被认为是均匀的,这一假设为物体的物理尺寸建立了一个界限。由于磁相互作用,建立了次级磁场,对于距离物体足够远的物体,该磁场具有偶极场的特性。接收器被认为位于此区域,从而提供与感应偶极矩直接相关的输出信号。因此,我们的兴趣集中在两个量上,即激发的初级磁场矢量 h 和感应偶极矩 m ,它们通过所考虑对象的因果关系相互关联。这种关系的各种形式将是本文的主要主题。
摘要 —与不带耦合电感的传统阻抗源网络相比,磁耦合阻抗源网络可以在较小的直通占空比下获得较高的电压增益,但无源元件和功率器件中的寄生电阻严重影响实际的电压增益,需要进行研究。本文推导并分析了三种不同情况下寄生电阻对磁耦合阻抗源网络电压增益的影响:第一,寄生电阻与输出等效电阻的电阻比不同,第二,不同的直通占空比,第三,不同的绕组比。首先,针对三种典型的磁耦合阻抗源网络——Trans-Z源、Г源和Y源网络,提出了考虑寄生电阻的广义等效电路模型。在此基础上,从数学上推导并讨论了上述三种不同情况下寄生电阻对电压增益的影响。并推导了同时考虑三种电阻比时的最大电压增益.最后,给出了具有代表性的仿真和实验结果来验证所提出的广义等效电路模型、相应的数学推导以及寄生电阻对磁耦合阻抗源网络的影响.
出于经济原因,机械用户的当前趋势是延长其旋转机械的使用寿命并提高工厂的可用性和可靠性。正在实施工厂寿命延长计划,而不是更换 20 到 30 年的机器,以使机器运行到其原始使用寿命甚至更长。由于机器的正常运行时间和可靠性对于发电站运营商来说是重中之重,因此安装有效的状态监测系统是一个非常重要的问题。满足峰值电力需求的抽水蓄能电站对发电机转子和定子施加了严重的热应力和机械应力。操作实践涉及每天两次或两次以上启动和关闭机器,这可能导致过早老化和与周期相关的定子绕组因材料中的高温度梯度而劣化。转子变形或转子径向偏差引起的振动问题促使许多大型发电机操作员安装一种有效的方法来测量静态和动态气隙。动态气隙监测是在水力发电机运行时测量转子到定子距离的过程。