TipMip是一个国际模型对比项目,旨在系统地促进我们对各种地球系统组件中的小费动态的理解,并评估相关的不确定性。通过连接和评估各种模型,TipMip将通过改善整体人为强迫和长期承诺(不可逆性)的评估来填补地球系统中的关键知识差距和气候建模。它将促进跨学科知识转移,并阐明当前在地球系统模型和分析中代表性不足的关键过程。这样做,它将为相关的政策和决策者提供有关地球系统中倾斜界限的信息。
● 卫星制造:开发和生产用于通信、地球观测、导航和其他目的的卫星。 ● 发射服务:提供将卫星和其他有效载荷发射到太空的基础设施和技术。 ● 空间研究:进行科学研究和实验以探索太空和开发新技术。 ● 空间应用:将来自空间技术的数据和服务用于各个领域,包括农业、灾害管理、城市规划和电信。 ● 太空探索:探索月球、火星及更远太空的任务,涉及载人和无人航天器。 ● 空间碎片管理:跟踪和减轻空间碎片以确保在轨安全运行的技术和策略。 ● 商业航天:与太空旅游和商业载人任务有关的服务和技术。 ● 空间法与政策:制定管理太空活动的法律框架和政策,包括国际合作与监管。
参考:1。Y. Nakamura等。 科学235:1616-1621(1987)2。 G.M. Lathrop等。 am。 J. Hum。 基因。 37:482-498(1985)3。 S.Povey,N.E。 Morton和S.L. Sherman,细胞遗传学。 细胞基因40:67-106(1985)4。 G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中Y. Nakamura等。科学235:1616-1621(1987)2。G.M. Lathrop等。 am。 J. Hum。 基因。 37:482-498(1985)3。 S.Povey,N.E。 Morton和S.L. Sherman,细胞遗传学。 细胞基因40:67-106(1985)4。 G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中G.M.Lathrop等。am。J. Hum。 基因。 37:482-498(1985)3。 S.Povey,N.E。 Morton和S.L. Sherman,细胞遗传学。 细胞基因40:67-106(1985)4。 G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中J. Hum。基因。37:482-498(1985)3。S.Povey,N.E。 Morton和S.L. Sherman,细胞遗传学。 细胞基因40:67-106(1985)4。 G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中S.Povey,N.E。Morton和S.L.Sherman,细胞遗传学。细胞基因40:67-106(1985)4。G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中G.M.Lathrop等人,提交给人类基因映射研讨会的摘要9。细胞遗传学。细胞遗传学,在Press
6FKRODUO\ YROXPHV GHDOLQJ ZLWK WKH WRSLF RI DLU SRZHU DQG PRVW SDUWLFXODUO\ DQ\ KLVWRULFDO DQDO\ VLV RI DLU SRZHU GRFWULQH DQG WKHRU\ LQFUHDVLQJO\ IROORZ WKH IRUPDW RI WKLV XVHIXO ERRN 5DWKHU WKDQ WKH UHÁHFWLRQV RI D VLQJOH DXWKRU WKHVH VWXGLHV ³ QRZ QXPEHULQJ PRUH WKDQ D VFRUH ³ KDYH JHQHUDOO\ SUHVHQWHG WKH FROOHFWLYH ZLVGRP RI VHYHUDO QRWDEOH VFKRODUV 7KLV DSSURDFK FHUWDLQO\ WHOOV XV PXFK DERXW WKH LQFUHDVLQJ FRPSOH[LW\ RI FRQWHPSRUDU\ WKRXJKW RQ WKH VXEMHFW EXW DOVR VXJJHVWV WKDW WKH IXQGDPHQWDO GHEDWHV DERXW WKH UROH LPSDFW DQG XOWLPDWH LQÁXHQFH RI DLU SRZHU LQ PRGHUQ ZDU PD\ QHYHU EH ÀQDOO\ UHVROYHG ,Q VKRUW ZKHQ WKH VXEMHFW LV DLU SRZHU LW VHHPV FOHDU WKDW ZH FDQQRW DUULYH DW DQ\ FRQVHQVXV 5DWKHU LW LV E\ ZD\ RI RXU FRQWLQXLQJ VWUXJJOH WR XQGHUVWDQG WKH LVVXH WKDW SURJUHVV LV PDGH
工作论文 2024 年 12 月 关于作者 Eleonora L. Cammarano 是约翰霍普金斯大学 SAIS 2025 年国际事务文学硕士 (MAIA) 候选人。她于 2023 年以优异成绩毕业于约翰卡伯特大学,完成环境和平建设顶点项目,主修国际事务,辅修哲学和经济学。Eleonora 的主要兴趣在于气候变化与安全的交叉点、有效的和平干预以及全球南方视角。Branson Gillispie 是约翰霍普金斯大学高级国际研究学院 (SAIS) 国际关系文学硕士 (MAIR) 二年级学生,拥有肯塔基州列克星敦特兰西瓦尼亚大学的国际事务和写作修辞与传播文学学士学位。他的研究兴趣涉及欧洲和欧亚大陆的冲突解决、民族主义、身份、移民和社会之间的交叉点。Manan Shah 是 FOGGS 的研究、IT 和通信顾问。他毕业于印度马尼帕尔理工学院,获得计算机科学与工程学士学位,辅修大数据。他的兴趣领域包括社会学、国际关系、气候变化和经济学。 FOGGS 论文系列编辑:Georgios Kostakos 研究助理:Antoine Brimbal 格式和出版:Manan Shah 免责声明 本出版物由 FOGGS 发行,仍归基金会所有。在注明出处的情况下,可以非商业目的复制。本出版物的内容由作者负责,不应被解释为一定反映 FOGGS 执行委员会或 FOGGS 合作伙伴或赞助商的观点。
X射线照相成像方案集中在特定的身体区域上,因此产生了相似性的图像并产生跨染料的复发性解剖结构。为了利用这些结构化信息,我们建议使用空间感知的记忆队列在射线照相图像(缩写为squid)中进行镶嵌和检测异常。我们表明,鱿鱼可以将无网状的解剖结构分类为复发模式。在推论中,它可以识别图像中的异常(未见/修改模式)。squid在无监督的异常检测中超过了13种最先进的方法,在两个胸部X射线基准数据集中至少在曲线下测量的两个胸部X射线基准数据集(AUC)。此外,我们还制定了一个新的数据集(数字解剖),该数据集综合了胸部解剖结构的空间相关性和一致的形状。我们希望数字解剖学能够促使异常检测方法的开发,评估和解释性。
河流生态系统中的生物多样性丧失速度要比限制系统更快,更严重,并且需要空间保护和恢复计划来停止这种侵蚀。关于生物多样性和物种分布的状态和变化的可靠且高度解决的数据对于有效措施至关重要。的高分辨率图仍然有限。与全球卫星传感器的耦合数据具有广泛的环境DNA(EDNA)和机器学习可以实现河流生物分布的快速而精确的映射。在这里,我们研究了使用沿瑞士和法国Rhone River的110个地点的埃德纳数据集组合这些方法的潜力。使用Sentinel 2和Landsat 8图像,我们产生了一组生态变量,描述了河走廊周围的水生栖息地和陆地栖息地。我们将这些变量与基于EDNA的存在和29种鱼类的不存在数据相结合,并使用了三种机器学习模型来评估这些物种的环境适用性。大多数模型表现出良好的性能,表明从遥感中得出的生态变量可以近似鱼类分布的生态决定因素,但是水衍生的变量比河流周围的陆地变量具有更强的关联。物种范围的映射表明该物种沿着瑞士的物种占用物的显着转移,从其瑞士阿尔卑斯山的来源到法国南部的地中海出口。我们的研究消除了将遥感和EDNA结合到大河中物种分布的可行性。该方法可以扩展到任何大河以支持保护方案。