汽车行业在过去100年中经历了快速发展,并为人们的生活带来了极大的便利。1然而,全球电动汽车(电动汽车)无疑是解决环境问题增加的解决方案,2随着高能量密度,低成本和耐用的储能系统的发展,一个关键的推动剂。电动汽车的早期电池技术包括铅酸和镍金属氢化物化学,以及诸如氢燃料电池和超级电容器之类的技术。3然而,锂离子电池(LIBS)是电动汽车的当前首选技术。在这里,常见的阴极化学分配包括氧化锂(LCO),氧化锰锂(LMO),磷酸锂(LFP),锂镍钴氧化铝(NCA)和锂镍 - 锰镍 - 锰 - 少量氧化物(NMC),并有效地相比之下。电池化学。由于用法依赖性降解和LIB的不稳定性,在某些操作窗口之外,实时嵌入电池管理系统(BMS)对于维持安全性和可靠性至关重要。4 BMS的关键目标是监视关键状态,最小化降解状态,5个平衡单元6并检测故障。7 LIB中的研究和开发传统上专注于多个长度尺度的电极和电解质开发,但是8将这些见解与BMS的设计联系起来仍然是迫切的需求。9电荷状态(SOC)10是关键状态之一,表示细胞中的剩余能力,而状态为
摘要:从金属到配体电荷转移(MLCT)发射的氟吡啶基复合物(RPC)已开发为DNA探针,并正在研究为潜在的抗癌药物。在这里,我们报告了结合DNA的MLCT释放性RPC与Cy5.5标记的DNA进行FO fo rster共振能量转移(FRET),形成了Mega-Stokes Shift Fret Fret Pairs。Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-“light switch” complexes [Ru(dppz) 2 (5,5 ′ dmb)] 2+ and [Ru(PIP) 2 (5,5 ′ dmb)] 2+ (dppz = dipyridophenazine, 5,5 ′ dmb = 5,5'-dim甲基-2,2'-二吡啶,PIP = 2-苯基 - 米达佐[4,5- f] [1,10] - 苯拥olththroline)。与双链体,G-四链体,三向连接和不匹配DNA的结合亲和力,并确定了衍生的FRET供体 - 受体接近,提供了有关潜在结合位点的信息。分子表明,令人鼓舞的抗癌特性,包括与PARP抑制剂Olaparib协同作用,机械研究表明,[RU(PIP)2(5,5'DMB)] 2+ ACTS以阻止DNA复制的进展。■简介
抽象的超氧阴离子(O 2• - )是有害的活性氧(ROS)。跨性金属离子复合物通常被用作消除ROS的抗氧化剂。在这项工作中,首先通过氢键与聚乙烯基醇结合了大豆蛋白分离株(SPI),是一种可生物降解的蔬菜蛋白,以合成基于SPI的聚合物微凝胶(SPI-PMG)载体。此外,通过结合4-羟基水杨酸氨基酸Schiff-bas bas bas Metal Metal Complacees(Hosalcysm,M = Cu,Zn),制备了一种新型水溶性的生物聚合物/金属复合物(SCM@SPI-PMG)。SPI-PMG的结构,形态和稳定性的特征是傅立叶变换红外光谱,扫描电子显微镜,X射线衍射模式和热量分析。结果表明,获得的SPMG的直径范围为150至400 nm。此外,通过氮气四唑轻还原测定法确定了生物聚合物 - 金属配合物的清除超氧化阴离子自由基活性。与载体SPI-PMG相比,SCM@SPI-PMG的清除活动得到了极大的改进。值得注意的是,SCCU@SPI-PMG的超氧化物歧化酶(SOD)模拟达到297.10%,SCZN@SPI-PMG模拟达到35.13%。因此,SCCU@SPI-PMG可以被视为酶SOD的生物功能模仿,并且在抗氧化药物领域具有有希望的应用前景。
摘要:使用主斑(MB)制造尼龙6/碳填充物复合材料和碳填充剂,并检查了MB对表面电阻和拉伸性能的影响。碳黑色(CB),碳纳米管(CNT)和石墨烯纳米板(GNP)用作碳填充剂。使用差分扫描量热法(DSC)测量了尼龙6/碳填充物复合材料的热性能,结晶温度显示很大,但熔融温度没有显示显着变化。X-射线衍射(XRD)的晶体结构分析结果表明,在尼龙6/碳填充物复合材料的情况下,α -type晶体结构是主导的。尼龙6/碳填充物复合材料的功率定律指数(n)和相位角度降低,这可以解释为间接证据,表明当应用MB时,改善了碳填充物的分散性。