摘要。在气候模型中,雪反照率方案一般仅计算窄带或宽带反照率,这导致了显着的不确定性。在这里,我们介绍了基于规格固定的辐射变量(Valhalla 1.0版)的多功能反照率计算方法,以优化光谱雪反照率计算。对于这种操作,积雪吸收的能量是由雪(tartes)和光谱辐照模型的光谱反照率模型的两流射线传递来衡量的。该计算考虑了基于降雪的辐射转移的分析近似,就考虑了入射辐射的光谱特征和雪的操作特性。对于这种方法,计算了30个波长,称为扎点(TPS),并计算16个参考iranciance pro文件,以结合吸收的能量和参考辐照度。然后,将吸收能量的能量插值,每个波长在两个TPS之间具有足够的核函数,这些核函数源自辐射转移,以降雪和大气。我们表明,吸收能量计算的准确性主要取决于参考文献对模拟的辐照度的适应(对于宽带吸收能量的绝对差<1 w m-2的绝对差<1 w m-2,绝对差<0。005用于宽带反照率)。除了准确性和计算时间的性能外,该方法还适用于任何大气输入(宽带,窄带),并且很容易适应整合到全球或区域气候模型的辐射方案中。
4. 吕勒奥理工大学土木环境与自然资源工程系,瑞典吕勒奥 97187 摘要:尺度不变特征变换 (SIFT) 自动提取控制点 (CP) 的能力在遥感图像中非常著名,然而,其结果不准确,有时由于生成少量错误 CP 对而导致匹配不正确,其匹配具有很高的误报。本文介绍了一种包含修改的方法,通过以不同方式应用绝对差和 (SAD) 来提高 SIFT CP 匹配的性能,适用于新一代光学卫星(称为近赤道轨道卫星 (NEqO))和多传感器图像。所提出的方法可以提高 CP 匹配率,并显著提高正确匹配率。本研究中的数据来自覆盖吉隆坡-北干地区的 RazakSAT 卫星。该方法包括三部分:(1)应用 SIFT 自动提取地面控制点;(2)使用经验阈值的 SAD 算法细化地面控制点匹配;(3)通过将原始 SIFT 结果与所提方法的结果进行比较来评估细化后的地面控制点场景。结果表明该模型具有准确和精确的性能,证明了所提方法的有效性和鲁棒性。关键词:地面控制点自动提取、绝对差和、近赤道卫星、多传感器、改进的 SIFT。1.
为了提取投标的详细信息,使用了 tender_basic_details 和 tender_work_items 表。在 54000 份投标中,27570 份工作项目在 tender_basic_details 表中有相应的条目。合并表后,所有空列都将被删除。数据集中的产品类别由 143 个数字代码表示。然后使用主表 gep_product_category 将这些数字替换为其文本对应项。对于分类数据类型,使用骰子度量计算距离,其中当值不相等时距离被视为“1”,否则为“0”。对于连续文本数据类型,两个文本之间的距离与相似度成反比。相似度使用余弦相似度方法计算。对于连续实值,距离是两个值的绝对差除以
摘要 — 本研究的目的是通过微波辐射计对风暴和热带系统演示时间实验 (TEMPEST-D) CubeSat 任务和全球降水测量微波成像仪 (GMI) 上的降水系统的观测进行交叉验证。本文的目的有两个:首先,展示 TEMPEST-D 和 GMI 观测之间的一致性;其次,展示合并 TEMPEST-D 和 GMI 观测时增强时间采样的潜力。采用了两种交叉验证方法。第一种交叉验证方法是使用先验时空约束定量比较 TEMPEST-D 和 GMI 对降水系统的亮度温度 (TB) 观测。对比分析表明,两种仪器的TB观测值具有相似的概率分布,平均绝对差为2.9 K。第二种交叉验证方法是定量比较TEMPEST-D和GMI TB对热带气旋系统的观测结果。本对比研究分析了三个风暴案例。分析表明,TEMPEST-D和GMI TB观测中的风暴结构和强度相似,总体平均相关系数(r)为0.9。与单独使用GMI数据相比,结合TEMPEST-D和GMI TB对飓风系统的观测可将采样频率提高2.5倍。
natalee是一项随机,多中心,开放标签,第三阶段的研究,对Kisqali + LeTrozole或Anastrozole(N = 2549),Letrozole或Anastrozole(N = 2552),用于对男性和女性进行II/III/III HR +/HER2-EBC的辅助治疗。在33.3个月的中位随访中,研究中有509个IDF(主要终点)事件(226 [8.9%]在Kisqali组中,NSAI-Olone ARM中的283个[11.1%],IDF在3年期的IDF为Kisqali + Nsai vs 87.6%的3年地标为90.7%,均为90.7%(nsiai vs 87.6%)(均为nsai),均为90%(均为nsai)(绝对均为4.1%)(绝对均为nsai)(绝对均为4.1%(绝对)(绝对)(绝对)。 IDFS事件的风险相对降低了25.1%; HR = 0.749(95%CI:0.628-0.892)。在研究中带有460个DDF(次要终点)事件(Kisqali Arm中的204 [8%],在Nsai-Alone Arm中为256 [10%],三年级地标在Kisqali + Nsai vs 90.2%的NSAI vs 90.2%的ddfs为92.9%,单独使用NSAI(绝对差2.7%); DDFS事件的风险相对降低了25.1%。 HR = 0.749(95%CI:0.623-0.900)。预先指定的亚组包括解剖阶段(II阶段:HR = 0.700 [95%CI:0.496-0.986]; III阶段:HR = 0.755 [95%CI:0.616-0.926]),结节状态(N0:n0:n0:hr = 0.723 [95%CI:N0:HR = 0.723 [95%CI:0.4%:N1 n1:4122)。 N3:HR = 0.759 [95%CI:0.631-0.912]),绝经状态(Premenopausal/ Men:HR = 0.688 [95%CI:0.519-0.913]; hr = 0.806 [95%CI:0.80%CI:0.645-1.007); HR = 0.652 [95%CI:0.443-0.959]; 0.444-0.986]),手术时组织学等级(1级:HR = 0.708 [95%CI:0.303-1.657]; 2级:HR = 0.696 [95%CI:0.548-0.885];级别3:HR 3:HR = 0.890 [95%CI:0.65%CI:0.6558-1.204]。1级亚组不包括患有T2N0疾病的患者。2,5,6,8亚组分析的结果包括没有预先指定的统计程序控制1型错误。
附录 A. 参考文献,第 56 页 B. 湿球黑球温度指数,第 60 页 C. 指挥官、高级士官和教员的预防热伤亡风险管理指南,第 61 页 词汇表,第 65 页 表格列表 表 2-1. 通用热适应策略,第 12 页 表 3-1. 25 名志愿者在高温下进行 3 小时户外运动时测得的直肠温度与其他体温之间的平均绝对差 (MAD),第 16 页 表 3-2. 在温暖和炎热环境中训练的液体补充和工作休息指南,第 18 页 表 3-3. 在温暖和炎热环境中连续工作时间和液体补充的建议,第 19 页 表 3-4. 轻型飞行服的战斗机热应力指数 (FITS)(晴天至轻微阴天),第 25 页使用标准补液政策在温暖和炎热环境中训练的替代液体补充指南,第 29 页表 3-6。补水优化策略,第 30 页表 4-1。劳力性中暑的个体和环境风险因素,第 34 页表 4-2。与劳力性中暑易感性有关的药物,第 35 页表 4-3。经典中暑和劳力性中暑的比较,第 39 页表 4-4。劳力性中暑的常用测量分析物及其恢复时间过程,第 40 页表 4-5。导致劳力性横纹肌溶解症的潜在因素,第 41 页表 5-1。疑似中暑伤员的警告信号、症状和紧急措施,第 43 页表 5-2。建议使用冰袋治疗疑似劳力性中暑,第 47 页表 5-3。军人昏倒后的不同表现类型,第 53 页表 5-4。 ICD-10 劳力性中暑症状编码,第 55 页 图表列表 图 2-1. 美国陆军人员 5 年期间(2015-2019 年)热衰竭和中暑的总体频率和每周分布,第 5 页 图 2-2. 军人在热环境中从事体力劳动时的能量(热量)传递,第 6 页 图 2-3. 测量位置对 WBGT 指数的影响,佐治亚州本宁堡,2005 年 7 月,第 8 页 图 2-4. 环境热应激对相当于 2 英里跑步或 3 英里行军的自定步调耐力任务的独立和综合影响,第 10 页 图 2-5. 权衡分析表现列线图,第 10 页 图 3-1. 热应激风险评估流程,第 14 页 图 3-2. CHS 和 UCHS 期间以三种代谢率持续体力劳动时身体核心温度反应说明,第 15 页军事和运动医学 WBGT 指数类别比较,第 20 页图 3-4。佐治亚州本宁堡 2017 年 7 月 31 日历史气象数据,第 21 页图 3-5。12 英里行军期间身体储热率比较,负重 55 磅,180 分钟完成(标准),速度慢 10%,重量轻 50%,或将衣服换到 PFU,第 21 页