绝对和相对轨迹测量系统 (ARTMS) 是一种软件有效载荷,它使配备低成本光学传感器的大量合作观察员能够仅使用方位角测量同时估算自己的轨道和附近非合作驻留空间物体的轨道。ARTMS 通过克服以前飞行演示中的关键限制,在仅角度导航方面取得了进步,这些限制包括:1) 依赖地面提供的精确先验相对轨道信息,2) 无法容纳多个观察员或目标,3) 依赖机动来提高可观测性,以及 4) 依赖 GPS 等外部计量来估算观察员的绝对轨道。相比之下,ARTMS 在多智能体框架内应用创新算法来实时自主估算机载多个观察员和目标的轨道。 ARTMS 通过使用低成本小型卫星硬件并尽量减少对机动和地面交互的依赖,提供自主、稳健且可扩展的绝对和相对导航,满足未来深空任务的关键需求。
航天器间会合和近距操作 (RPO) 期间的机载制导、导航和控制 (GNC) 对相关算法提出了独特的挑战。未来的任务将需要更大的机载自主性,同时保持不同距离的在轨安全保障,感兴趣的场景可能涉及多个航天器,这些航天器可能是合作的,也可能是非合作的。本文介绍了一种用于分布式空间系统的新型 GNC 软件有效载荷的构想和开发,该有效载荷可在多个物体之间实现安全、自主的 RPO,并具有最大的灵活性和模块化。导航算法融合了远距离摄像机图像、近距离摄像机图像、差分载波相位全球导航卫星系统数据和卫星间交联数据,以估计整个感兴趣范围内的绝对轨道、相对轨道、目标姿势和辅助状态。控制算法套件提供了最佳机动解决方案,可在远距离实现有效的长期编队维持、近距离实现厘米级会合精度以及快速、稳健的防撞。远、中、近距离的合作和非合作目标原型模拟展示了分布式空间系统的强大 GNC 性能,也是实现航天器灵活自主 RPO 套件完全集成的重要一步。
本文介绍了在Starling地层飞行光学实验(StarFox)期间进行的一群小型航天器群的初始飞行结果。Starfox是NASA Starling Mission上的四个实验之一,该实验由2023年7月推出的四个立方体组成。仅一角方法应用板载摄像机获得的卫星间轴承角度进行导航,增加卫星自主权并实现新的任务概念。尽管如此,先前的飞行演示仅介绍了一个观察者和目标,并依靠Apriori目标轨道知识来初始化,转化操作以解决目标范围以及外部绝对轨道更新以维持收敛。StarFox通过应用仅角度的绝对和相对轨迹测量系统(ARTM)来克服这些局限性,该系统整合了三种新型算法。图像处理使用多种假设方法和域特异性运动学建模来启用并跟踪图像中的多个目标,并计算目标轴承角。批处理轨道确定通过迭代批次最小二乘和弱可观察到的目标范围的采样来计算从轴承角批次的初始群轨道估计。顺序轨道确定利用具有非线性模型的自适应,有效的无气体滤波器,以随着时间的推移来完善群体估计。通过横跨链路共享的多观察者测量值无缝融合以实现可靠的绝对和相对轨道测定。Starfox Flight数据和遥测者提供了卫星群的仅自动角度导航的首次演示,包括多目标和多观察者相对导航;未知目标导航的自主初始化;并同时确定绝对和相对轨道。在有挑战性的测量条件下,单个观察者达到了目标范围的0.5%的相对定位误差,而多个观察者则降低至0.1%。结果表明,关于正在进行的Starfox活动以及仅在未来分布式任务中的纯粹导航的应用方面表现出色。