外壳 - C、F、G、R、T、W 和 Z 级:冲击挤压或机加工铝合金。H、K、N、S 和 Y 级:耐腐蚀钢。J 和 M 级:符合 MIL-DTL-38999 的高性能树脂。(仅限外壳基材。有关表面处理或表面处理,请参阅 MIL-DTL-38999。)垫圈 - 硅橡胶。环 - 耐腐蚀钢,钝化,最大厚度为 1.020 毫米(0.04 英寸)。绳索 - 绝缘不锈钢,钝化。允许使用 ASTM-A967、实践 D 或同等方法进行钝化或钝化表面处理验证。绝缘层应能承受 200°C 环境温度。紧固件 - 不锈钢,钝化。选项:铝与盖子一体。配合连接器:参见 MIL-DTL-38999,系列 III。垫圈应粘合到盖子上,或机械固定。绳索应在紧固件上自由旋转。紧固件拉伸强度:保护罩和绳索组件应能承受施加在轴向和纵向上的 25 磅自重拉伸载荷。载荷应施加在绳索组件的末端并保持 5 分钟。绳索组件不得与保护罩分离或损坏绳索组件。轴向和纵向均为 25 磅。负载应施加在绳索末端。空气泄漏:测试应符合 EIA-364-02 的规定,但测量的最短时间应为 10 秒。空气泄漏率不得超过每小时 1 大气压立方英寸 (4.55 X 10 -3 cm 3 /s)。保护盖应与已移除触点或插件的连接器配对,以便可以对保护盖或储存容器内部施加 10 lbft/in 2 (.703 Kg/cm 2 ) 的压力。资格认证 (所有类别)。资格认证应符合 MIL-DTL-38999 的规定,但仅需进行以下测试顺序:
有机 - 无机杂种钙钛矿(OIHP)已被证明是有希望的非易失性记忆的活动层,因为它们在地球,移动离子和可调节的尺寸中的丰富丰度。但是,缺乏对一维(1D)OIHP的可控制造和存储特性的研究。在这里,报告了1D(NH = CINH 3)3 PBI 5((IFA)3 PBI 5)钙钛矿和相关的电阻记忆特性。溶液处理的1D(IFA)3 PBI 5晶体具有良好定义的单斜晶相和长度约为6 mm的针状形状。它们表现出3 eV的宽带隙,高分解温度为206°C。此外,使用N,N-二甲基甲酰胺(DMF)和Dimethyl Sulfoxide(DMSO)的双溶剂获得了具有良好均匀性和结晶的(IFA)3 PBI 5薄膜。研究了这种各向异性材料的内在电性能,我们构建了仅由Au /(IFA)3 PBI 5 /ITO组成的最简单的存储单元,该电池构成了带有横式阵列设备构造的高型设备。电阻随机访问存储器(RERAM)设备具有双极电流 - 电压(I-V)磁滞特性,显示了所有基于OIHP的新闻器的记录低功耗〜0.2 MW。此外,我们的设备拥有最低的功耗和“设置”电压(0.2 V),其中最简单的基于钙钛矿的存储器设备(也包括无机设备),这不需要需要双金属电极或任何其他绝缘层。他们还表现出可重复的电阻切换行为和出色的保留时间。我们设想1D OIHP可以丰富低维杂种钙钛矿库,并为内存和其他电子应用程序领域中的低功率信息设备带来新的功能。
最多研究的离子检测设备是离子敏感的场效应晶体管(ISFET)。ISFET架构基于常规的场效应晶体管结构,在该结构中,将电解质解放置在栅极(命名参考电极)和绝缘体之间。[6–8] ISFET基于硅技术,在该技术中,电解质与通道之间的直接接触是不可能的。最近,使用基于金属氧化物,石墨烯和有机导体的新兴技术通过去除绝缘层来开发ISFET结构。[9–11]电解质溶液和半导体通道之间的直接接触导致工作电压较低和灵敏度提高。在各种技术方法中,由于其比较优势,有机物受到了极大的关注。有机物可以在低温下处理,柔软导致与生物组织的机械兼容性,支持混合的离子电导传导率,并且可以对其性能进行化学调整以靶向特定的应用要求。专注于生物电子应用,有机物提供的其他基本特征是水性环境中的稳定性,并且在晶体管体系结构中使用时,已经证明了设备操作远低于1 V。[11–16]后一种特征对于避免电解很重要。在电气门控有机晶体管中,晶体管的通道通过电解质与栅极接触。[20],因为整个电影的整体参与[17]在这种配置中,有机通道材料可以对电解质离子不可渗透或渗透。在以前的操作方式中,在栅极/电解质和元素/通道界面上形成了纳米厚的“电气双层”(EDL)。电解质/通道EDL以≈1÷10μfcm-2的顺序提供电容值,从而导致子伏电压操作。[18,19]在后一种操作模式下,有机半导体可渗透到电解质上,从而产生了有机电化学晶体管(OECTS)的类别。
提高房屋能源效率的最佳方法之一是阁楼绝缘。在该计划中,效率专家将描述房屋在冬季如何失去热量以及如何通过绝缘层改善房屋的信封。Groton公用事业公司的代表还将描述Groton Utilities客户可用的出色激励措施。了解更多聚光灯之旅| CCSU库补充:减少体现的碳,3月20日,星期四,下午4-6点,AIH 102,CCSU Innovation Hub,1615 Stanley St,新不列颠加入BuildGreenct,从CCSU Elihu Burritt图书馆添加剂设计团队,承包商,承包商和制造商的CCSU ELIHU BURRITT图书馆和交叉饰面(Claminated-tim-tim-tim-tim-tim-tim-timber(claminated-tim)结构的收益。设计团队已经准备了针对完整的CLT结构的钢和混凝土结构的生命周期评估,以证明体现碳的减少。团队在使用项目中使用CLT结构时还将讨论实用提示。注册气候未来电影节3月20日,星期四,6:30-8:30pm,汉普顿市政厅通讯。rm,汉普顿(Hampton)的164 Main St,hampton Free Film播放 - “ 2个小时内的十个电影中的十部电影探索了对气候变化的艺术和人类反应。”在两个小时内来自四大洲的十部电影*表达了我们的感受 - 希望和愤世嫉俗,气候否认和气候悲伤,愤怒和伤心欲绝,韧性和决心 - 并为赋予气候赋予能力的途径提供了途径。Bill McKibben是350.org和第三幕的共同创始人,在录像带介绍中推出了音乐节。 由汉普顿绿色能源委员会赞助Bill McKibben是350.org和第三幕的共同创始人,在录像带介绍中推出了音乐节。由汉普顿绿色能源委员会赞助
随机访问内存(DRAM)和闪存已达到物理缩放限制。为了解决这个问题,在去年已经提出了新兴的记忆技术。[8-10],基于氧化还原的电阻随机访问记忆(RERAMS)因其CMOS兼容的制造,功能,多功能性和缩放潜力而受到特别关注。[1,11,12]它被认为是下一代存储记忆,内存档案计算和人工智能的重要组成部分。[3,8,10–12] RERAM是一种两端金属 - 绝缘子 - 金属细胞。绝缘层的电导率(通常是过渡金属氧化物)可以通过外部电刺激引起的离子调节调节。[11]氧化物膜具有传导金属阳离子,构值和氧离子/空位等离子的能力,因此通常称为固体电解质。[13–15]根据功能原理,两种类型的重新拉液特别有前途 - 电化学金属化记忆(ECM)和价值变化存储器(VCM)。[11,16,17] ECM细胞中的电阻转换依赖于在活性电极和反电极之间分别形成和溶解的金属丝。[16]丝的形成对应于设定的过程,在此过程中,细胞从高电阻状态(HRS)转换为低电阻状态(LRS)。设定的过程伴随着单个个体电化学过程,即活动电极的电离(氧化),金属阳离子在氧化物电解质中的扩散和计数器电极下的成核/生长。反向电势的应用通过氧化/溶解细丝将细胞转换回HRS,从而导致重置过程。电化学活性金属(例如Ag,Cu或它们的合金/化合物)通常用作活性电极。[13,18,19]反电极由PT,IR或化合物(例如TIN)等惰性材料制成。[18–20] VCM细胞由具有高功函数的底部电极组成(例如,PT,TIN),该电极与氧化物形成了Schottky界面。顶部电极具有电活性,通常是具有高氧亲和力(例如TA,Ti,HF)的金属,它允许氧化还原反应/离子交换并与氧化物形成欧姆接触,有利于氧气空位缺陷形成。[21,22]被广泛接受的是,VCM电池的电阻转换是通过通过迁移和氧气空位缺陷的重新分布来调节Schottky界面处的静电屏障。[11,23]
非挥发性电阻开关,也称为忆阻器 1 效应,即电场改变双端器件的电阻状态,已成为高密度信息存储、计算和可重构系统 2 – 9 开发中的一个重要概念。过去十年,非挥发性电阻开关材料(如金属氧化物和固体电解质)取得了实质性进展。长期以来,人们认为漏电流会阻止在纳米薄绝缘层中观察到这种现象。然而,最近在过渡金属二硫属化物 10, 11 和六方氮化硼 12 夹层结构(也称为原子阻断器)的二维单分子层中发现的非挥发性电阻开关推翻了这种观点,并由于尺寸缩放的好处增加了一个新的材料维度 10, 13。我们在此以单层 MoS 2 为模型系统,阐明了原子片中切换机制的起源。原子成像和光谱表明,金属取代硫空位会导致电阻发生非挥发性变化,这得到了缺陷结构和电子状态计算研究的证实。这些发现提供了对非挥发性切换的原子理解,并开辟了精确缺陷工程的新方向,精确到单个缺陷,朝着实现最小的忆阻器的方向发展,以应用于超密集存储器、神经形态计算和射频通信系统 2、3、11。通过结合扫描隧道显微镜/扫描隧道光谱 (STM/STS) 和局部传输研究,我们观察到硫空位(MoS 2 单层中的主要缺陷)在其天然形式下不起低电阻路径的作用,这与金属氧化物存储器中氧空位的影响形成鲜明对比。 然而,从底部或顶部电极迁移的金属离子(例如金离子)可以取代硫空位,产生导电的局部态密度 (LDOS),从而驱动原子片进入低阻状态。 在反向电场下去除金原子后,缺陷恢复其初始空位结构,系统返回到高阻状态。 这种导电点切换机制类似于在原子级上形成导电桥存储器 14。然而,它本质上是不同的,也是独一无二的,因为单个金属离子填充了晶格中的单个空位,而不是通过高度无序的材料形成金属桥。我们发现硫空位在 2 纳米间距处稳定,导致忆阻器密度约为每 1 个单位
抗干扰措施 使用高度复杂的微电子器件需要始终实施抗干扰和布线概念。现代机器的结构越紧凑,对性能的要求越高,这一点就变得越重要。以下安装说明和建议适用于“正常工业环境”。没有一种解决方案适合所有干扰环境。当采用以下措施时,编码器应处于完美的工作状态: • 在串行线的开始和结束处(例如,控制和最后一个编码器)用 120 电阻器(接收/发送和接收/发送之间)终止串行线。 • 编码器的接线应远离可能造成干扰的电源线。 • 屏蔽电缆横截面积至少为 4 mm²。 • 电缆横截面积至少为 0.14 mm²。 • 屏蔽和 0 V 的接线应尽可能呈放射状排列。 • 不要扭结或卡住电缆。 • 遵守数据表中给出的最小弯曲半径,避免拉伸和剪切载荷。 操作说明 Pepperl+Fuchs 制造的每个编码器都处于完美状态。为了确保这种质量以及无故障运行,必须考虑以下规范: • 避免对外壳(特别是编码器轴)造成任何冲击,以及避免编码器轴的轴向和径向过载。 • 只有在使用合适的联轴器时,才能保证编码器的精度和使用寿命。 • 编码器和后续设备(例如控制)的工作电压必须同时打开和关闭。 • 任何接线工作都必须在系统处于死区的情况下进行。 • 不得超过最大工作电压。设备必须在超低安全电压下运行。 连接电气屏蔽的注意事项 设备的抗干扰能力取决于正确的屏蔽。在这个领域,安装故障经常发生。通常只在一侧应用屏蔽,然后用导线焊接到接地端子,这是 LF 工程中的有效程序。但是,在 EMC 的情况下,适用 HF 工程规则。HF 工程的一个基本目标是以尽可能低的阻抗将 HF 能量传递到地面,否则能量会释放到电缆中。通过与金属表面的大面积连接可实现低阻抗。必须遵守以下说明:• 如果不存在等电位电流风险,则将两侧的屏蔽层大面积地连接到“公共接地”。• 屏蔽层必须穿过绝缘层后面,并且必须夹在张力释放器下方的大表面上。• 如果电缆连接到螺钉型端子,则张力释放器必须连接到接地表面。• 如果使用插头,则应仅安装金属插头(例如带有金属外壳的 D 型插头)。请注意张力释放器与外壳的直接连接。
EEE G541 配电设备和配置 [3 2 5] 消费者端配电装置的基本配置。变压器类型、规格、性能、保护和尺寸。电缆和绝缘层的类型、电缆参数、载流量和保护。低压开关设备的额定值及其在选择、开关瞬态和清除时间中的应用。保险丝的属性(以载流量为参考)。仪表、仪器变压器及其应用。配电层的电压控制。电能质量功率因数、频率和谐波含量的基本概念 EEE G542 电力电子转换器 [3 2 5] 转换器的重要性在于它是电源和负载之间的接口。DC-DC 转换器:降压、升压和降压-升压配置。ACDC 转换器:单相和三相二极管和晶闸管转换器。晶闸管转换器中的逆变和线路换向逆变器的应用。 DCAC 转换器:单相和三相开关模式电压源逆变器、不同类型的 PWM 操作、多级 VSI 操作、空间矢量调制技术。AC-AC 转换器:晶闸管供电交流负载、循环换流器。矩阵转换器阵列及其作为 DC-DC 和 DC-AC 转换器的操作。EEE G543 功率器件微电子学与选择 [ 3 0 3] 功率器件封装的热特性、R θJC 和 R θCS 的问题、热流及其对器件温度的影响、散热器设计和选择。双层结行为、漂移区的概念、功率二极管的特性。厚膜 BJT 中的基极操作、稳态特性、开启和关闭时间、多级功率达林顿。四层结行为、晶闸管的两个晶体管模型、四层结器件的动态模型。GTO 晶闸管、四层结器件的关闭机制、当前的技术问题。 MOS 的工作原理和特性、功率 MOSFET 的特性和结构。MOSFET 到 IGBT 的发展、技术优势、特性和动态行为。绝缘栅技术的当前技术问题。矩阵转换器简介。EEE G545 电力电子系统控制与仪表 [3 0 3] 参考电力电子转换器的调节和控制问题。反馈转换器模型:基本转换器动态、快速切换、分段线性模型、离散时间模型。DC-DC 转换器的电压模式和电流模式控制、整流器系统的比较器控制、比例和比例积分控制应用。基于线性化的控制设计:传递函数、补偿和滤波、补偿反馈控制系统。滞后控制基础知识以及在 DC-DC 转换器和逆变器中的应用。一般边界控制:边界附近的行为以及合适边界的选择。模糊控制技术的基本思想和性能问题。电力电子电路传感器、速度传感器和扭矩传感器。EEE G552 固态硬盘 [3 2 5] 驱动系统简介:要求、组件和基准;电机理论回顾;电机的电力电子控制:要求和操作问题;感应电机的静态速度控制:交流电源控制器、滑差能量回收、VSI 和 CSI 控制的感应电机;同步电机和相关机器的速度控制;直流电机速度控制问题:整流器和斩波控制器;先进的感应电机驱动控制:矢量控制,
建筑物的热隔离是当前能量和环境问题的核心。随着2024年生效的新法规,建筑行业正处于转折点。这些加强的标准旨在显着提高新建筑物和现有建筑物的能源效率,同时减少其碳足迹。对于建筑专业人士,建筑师和所有者,了解这些变化对于设计和翻新满足环境要求的建筑物至关重要。从2012年热调节(RT 2012)到2020年环境调节(RE 2020)的转变标志着建筑物热绝缘的方法是一个重要的里程碑。这种进化不仅增强了能源效率标准,而且还引入了新的环境标准。RE 2020优先考虑三个主要目标:减少建筑物的碳足迹,提高其能源性能并增强夏季舒适感。为了实现这些目标,热绝缘标准已得到显着加强。例如,与RT 2012相比,不透明壁的最小热阻力平均增加了20%。最重要的变化之一涉及整体建筑设计方法。虽然RT 2012主要关注能源消耗,但RE 2020考虑了建筑物的整个生命周期,从建筑到寿命末。这种整体方法意味着对绝缘材料的选择进行了更深入的反思,不仅考虑了它们的热性能,还考虑了它们的环境影响。u值越低,绝缘效果越好。2024年建造信封的技术要求比以前更为严格。这些新标准旨在在建筑物的内部和外部之间建立几乎不可渗透的热屏障,从而减少加热和空调需求。关键因素是热传输的系数(U值),该系数根据内部和外部之间的温度差异测量通过墙壁的热量。这是2024年各种墙壁最大允许的U值的概述: *外墙:0.15 w/m²k *屋顶:0.10 W/m²K *下层平板:0.20 w/m²K * Windows:1.2 w/m²K这些值这些值代表了先前的标准,代表了平均允许的30%的标准,均为先前的标准率高。为了实现这些性能,不可避免地使用高质量的绝缘材料和增加的绝缘厚度。热桥,热量更容易逃脱,在新法规下需要特别关注。The coefficient psi (Ψ), which measures linear heat loss at junctions between building elements, must now meet very strict values: * Junction wall/floor: Ψ ≤ 0.5 W/mK * Junction wall/roof: Ψ ≤ 0.3 W/mK * Junction between walls: Ψ ≤ 0.2 W/mK * Window perimeter: Ψ ≤ 0.4 W/mK Let me know if you'd like me to rephrase 任何事物!les nouvelles normes d'Aintrique thermique 2024 jexigent l'l'iperiques de construction de constructionavancéespor garantirl'Efficacitédesbâtiments。la Mesure del'étanchéité-l'Air est Cruciale,Avec des Seuils以及严格的MesurésPAR LE系数Q4PA-SURF。该过程涉及:1。2。3。专业人员必须从设计阶段整合此要求,并提供合适的密封解决方案。强烈鼓励使用基于生物的材料在热绝缘材料中,因为它们具有降低的环境影响,同时提供出色的绝缘性能。标准2024将这些材料纳入新结构的最低率。生物包封的材料必须符合特定的性能标准,例如小于或等于0.040 W/(M.K)的热导率(λ)。将这些材料的整合到绝缘材料中不仅满足技术要求,而且也是全球可持续建筑方法的一部分。为了满足2024个热绝缘标准的增加要求,建筑部门必须依靠创新的技术和解决方案。提前不仅可以满足监管标准,还可以优化建筑物的整体能源性能。从外部(ITE)的热绝缘材料正在经历明显的演变以适应标准2024。新的ITE系统结合了高性能复合材料和连接的传感器,从而可以对建筑物信封的热和潮流性能进行实际监视。最后,相变材料(PCM)代表了热绝缘领域的重大进步,因为它们具有存储和释放大量能量的能力。彻底的热学习用户批准的软件。在从固体到液体的相过渡期间,反之亦然,集成的PCM(相变材料)允许建筑物内的自然温度调节,从而减少加热和空调需求。PCM可以纳入各种形式,例如嵌入石膏面板中的微胶囊,带有聚合物矩阵的复合材料或用于热量储能的宏观化系统。这些解决方案增强了建筑物的热惯性,这显着有助于实现2024年标准设定的热舒适目标。门窗在全球建筑物绝缘层中起着至关重要的作用。2024标准对太阳因子(SW)和发光传输(TL)施加了更高的性能要求。具有低发射率的三层玻璃窗口已成为新结构的规范,其UW值低于0.8 W/(m².k)。该领域的创新涉及能够根据外部条件调整其光学和热性能的动态玻璃系统。这些电致变色或热色素技术全年优化太阳能增益和发光度,从而降低了建筑能源消耗。地板和屋顶绝缘材料也有了重大的技术进步。在地板上,闭孔泡沫隔离器可确保高温电阻率,同时保持完美的空气和湿度紧密,尤其适用于卫生坑或陶土板构造。对于屋顶,真空绝缘面板(VIP)正在越来越受欢迎,提供了厚度降低的出色绝缘材料,使其在空间有限的翻新项目中有利。4。5。热绝缘已经从简单地将隔离材料应用于复杂而智能的系统,以整合高级技术来优化整体建筑能源性能。计算方法和2024年认证的方法已经发生了重大发展,以适应新的热和环境绩效要求。这种整体方法可确保对建筑能源绩效的精确评估。动态热模拟软件(STD)在设计和评估符合2024标准的建筑物中起着至关重要的作用,对整个一年中建筑物的热行为进行了建模,考虑到方向,太阳能输入,热习惯,热习惯以及加热和频道系统。批准的2024认证软件必须集成THBCE的最新计算方法。要符合新的性能指标,设计师和建筑商必须考虑诸如Pleiades,DesignBuilder和TRNSYS之类的软件工具。这些程序不仅验证符合建筑标准,而且还优化建筑设计以提高能源效率。BBIO,CEP和TIC性能指标是2024方法论的关键。BBIO评估建筑物的生物气候质量,独立于能源系统,考虑了隔热,方向和太阳能收益等因素。在2024年,与RT 2012相比,BBIOMAX目标降低了30%,鼓励设计师优化建筑信封。CEP测量建筑物的主要能源消耗,用于加热,冷却,照明,热水生产和通风。TIC评估没有空调的夏季室内温度。2024标准为住宅建筑物设置了50 kWhep/(m².an)的Cepmax,这与以前的法规大幅度降低。为了实现这些雄心勃勃的目标,使用高性能能源系统并整合可再生能源是必不可少的。2024标准加强了此指标,要求室内温度每年不超过28°C超过28°C。这一要求推动了采用动态太阳阴影和夜间通风等被动解决方案。BBC-Feftinergie 2024标签代表了能量性能的卓越表现。要获得它,建筑物必须达到2020年的标准并超越。验证BBIO,CEP和TIC目标。 由认证组织进行的空气紧密度测试。 整个建筑物生命周期的碳足迹评估。 可再生能源的整合。 BBC-Feftinergie 2024标签需要的CEP至少比2020年标准(住宅建筑物40 kWhep/(m².an))低20%。 此外,它要求可再生能源满足建筑物需求的至少40%。 这些严格的标准推动了创新并采用了建筑部门的尖端技术。 2024年引入更严格的绝缘标准具有重大的经济和环境影响。 这种转变会影响建筑成本,财产价值和建筑物的生态足迹。 生命周期评估(LCA)成为评估隔离解决方案的全球环境影响的重要工具。验证BBIO,CEP和TIC目标。由认证组织进行的空气紧密度测试。整个建筑物生命周期的碳足迹评估。可再生能源的整合。BBC-Feftinergie 2024标签需要的CEP至少比2020年标准(住宅建筑物40 kWhep/(m².an))低20%。此外,它要求可再生能源满足建筑物需求的至少40%。这些严格的标准推动了创新并采用了建筑部门的尖端技术。2024年引入更严格的绝缘标准具有重大的经济和环境影响。这种转变会影响建筑成本,财产价值和建筑物的生态足迹。生命周期评估(LCA)成为评估隔离解决方案的全球环境影响的重要工具。这种方法考虑了材料生活的所有阶段,从提取到处置或回收。在2024年,必须为每个主要的建筑或翻新项目进行LCA。结果表明,某些基于生物的材料(例如木羊毛和大麻)通常比传统的绝缘选择更好。建筑物的新隔热标准远远超出了直接的热性能,并考虑了对环境的长期影响。例如,与传统的合成材料相比,使用木制羊毛面板可以将建筑物的碳足迹减少50年。目标不仅是减少能源消耗,而且是在整个建筑物的生命周期中最大程度地减少环境排放。为了实现这一目标,建筑师必须优化建筑物的各个方面,从物质选择到能源系统。新标准需要改变思维的转变,不仅要考虑即时成本和收益,还考虑了长期储蓄和环境影响。政府提出了经济激励措施,以鼓励采用这些标准,包括: *MapRimerénov':低收入家庭的90%覆盖范围 *以零利率为零:20年内20年内的eco-loan * 50,000欧元 *能源储蓄证书(CEE)(CEE):全面翻新的奖励这些奖励可显着降低这些薪资期。例如,耗资40,000欧元的100平方米房屋的全面翻新可能会在这些激励措施的帮助下从15年下降到7年,从而导致每年能源节省1,500欧元。减少碳排放是新标准的关键目标。E+C-(能量正和减少碳)计算方法已集成到法规中,为整个建筑物的生命周期设定了雄心勃勃的温室气体排放目标。到2024年,与2020年级相比,预计排放量将减少30%。要实现这些目标,建筑师必须专注于使用低碳材料,例如减少 - 连接器混凝土或本地采购的木材,并将可再生能源生产系统整合到建筑物中。建筑的未来正朝着更智能,更高效和对环境意识的建筑物发展,从而最大程度地降低了它们对地球的影响。(mbsurf_moy),可以放松生物气候需求阈值bbio_max,尤其是对于超过100平方米的房屋。地理状况:与位于热区(H2C或H3或H3且高度<400m)的房屋相关的调制(McGéo)的调制增加,从而使能源消耗天花板CEP_MAX,CEP,CEP,NR_MAX和CO2ICénergie_maxIcénergie_maxiCénergie_max通过使用空气条件的使用而增加。连接到热网络:对于连接到热网络的房屋,iCénergy_max平均天花板升至200 kg eqco2/m²,直到2027年。用于小规模的集体建筑物(shab≤1300m²)的适应与总建筑物表面积(MISURF_TOT)相关的调制,以减少构造排放天花板ICCONSTRUCTION_MAX,这考虑了每平方米参考表面的CO2排放。经验表明,由于电梯对小规模集体建筑的每平方米基础的重大影响,这种类型的建筑物确实受到指标ICConstruction的惩罚。用于组成小公寓(Smoyenne logement≤40m²)的集体建筑物基于平均公寓表面积(MISURF_MOY)的调制引入,以确定构造排放天花板ICCONSTRUCTION_MAX,考虑到小规模建筑(壁尺寸设备)的每平方尺度建筑物的每平方米基础上的较高密度,可用于墙壁,墙壁的设备,等等。对于配备太阳能电池板的建筑物:所有建筑物都受到RE2020的影响,无论大小如何:基于太阳能电池板安装(MIPV)的影响,当安装的碳足迹超过20kGGO2/m²时,基于太阳能电池板安装(MIPV)对施工排放天花板ICCONSTRUCTION_MAX的影响。由于这些设备的碳足迹,在存在太阳能电池板覆盖的重要表面积的情况下,可以放松建筑排放天花板。对于连接到分类热网络的建筑物:与能源消耗相关的二氧化碳排放的平均iCénergie_max天花板从2022 - 2024年延长至2025-2027。由于大多数热量网络仍然没有足够的可再生能源速度,因此公共当局希望为网络经理提供三年的时间,以进行必要的工作以脱碳,使其网络化。