IEA-EBC 计划由执行委员会全面控制,该委员会不仅监督现有项目,还确定可能通过合作获益的新战略领域。由于该计划基于与 IEA 签订的合同,因此这些项目在法律上被确立为 IEA-EBC 实施协议的附件。目前,IEA-EBC 执行委员会已启动以下项目,已完成的项目已通过以下方式标识:(*):附件 1:建筑物负荷能量测定 (*) 附件 2:Ekistics 和高级社区能源系统 (*) 附件 3:住宅建筑节能 (*) 附件 4:格拉斯哥商业建筑监测 (*) 附件 5:空气渗透和通风中心 附件 6:社区能源系统和设计 (*) 附件 7:地方政府能源规划 (*) 附件 8:居民通风行为 (*) 附件 9:最低通风率 (*) 附件 10:建筑暖通空调系统模拟 (*) 附件 11:能源审计 (*) 附件 12:窗户和开窗 (*) 附件 13:医院能源管理 (*) 附件 14:冷凝和能源 (*) 附件 15:能源学校效率 (*) 附件 16:BEMS 1 - 用户界面和系统集成 (*) 附件 17:BEMS 2 - 评估和仿真技术 (*) 附件 18:需求控制通风系统 (*) 附件 19:低坡屋顶系统 (*)
1.-2.4.7 射线造成的损伤:理论 34 1.2.5.中子和 7 射线损伤的实验比较 ..38 1.2.6.离子造成的损伤:理论 44 1.2.7.中子和离子损伤的实验比较 ... 50
在 60 年代末和 70 年代初,人们意识到需要可重复使用的隔热罩来为航天飞机轨道器系统提供热保护。因此,艾姆斯研究中心着手开展一项计划,以开发可重复使用的陶瓷纤维绝缘技术的内部能力。多年来,艾姆斯研究中心一直是美国领先的隔热罩材料气动对流测试中心之一,使用我们广泛的电弧等离子体测试设施(参考文献 1)。为了促进这种新材料的开发(预计用于航天飞机),我们认为了解材料特性和制造工艺非常重要。随着我们内部能力的提高,我们将目标扩大到开发耐高温、更耐用、更坚固、更坚硬和更柔韧的陶瓷隔热罩材料。到 20 世纪 70 年代中期,该计划带来了重大的新材料开发。其中包括改进的涂层(参考文献 2)、更坚固、更耐高温的瓷砖材料(参考文献 3)以及对材料空气对流和机械测试的支持技术的大量贡献(参考文献 4)。