相干态是一个重要的概念,其特征值关系为 ˆ a | α = α | α as,是研究和描述辐射场的一个非常方便的基础,它是由薛定谔于 1926 年在对量子谐振子的研究 1 – 4 中首次提出的。然而,基于相干态和光电检测的量子相干理论已由 Glauber、Wolf、Sudarshan、Mandel、Klauder 等人在 20 世纪 60 年代初发展起来,它与经典辐射场中的量子态最为相似,因此被认为是经典力学和量子力学的边界。Glauber 的创新工作于 2005 年获得诺贝尔奖,以表彰他。事实上,相干态已经成为量子物理学中最常用的工具之一,在各个领域,特别是在量子光学和量子信息中发挥着非常重要的作用。相干态使我们能够使用 Wigner 等人早期开发的准概率来描述光在相空间中的行为 7 。相干态的重要性在于它们的概括已被证明能够呈现非经典辐射场特性 8 – 10 。激光作为一种极具潜力的相干光的表现标志着对光与物质之间非线性相互作用的广泛研究的开始 11 。这可以通过实验通过将相干态穿过克尔介质来实现,这是由于出现了可识别的宏观相干态叠加,即所谓的猫态 12 。当克尔介质的入口状态是正则相干态时,Kitagawa 和 Yamamoto 引入了克尔态作为克尔介质的输出 13 。克尔效应会产生正交压缩,但不会改变输入场光子统计特性,即它仍然是泊松分布,这是正则相干态输入的特性,用于产生相干态的叠加 14 – 16 。这里值得注意的是,光在克尔介质中的扩散也以非谐振荡器样本为特征,非谐项取为 ˆ np ,其中 p 为整数(p > 1)17 , 18 。该振荡器模式可以被评估为描述注入具有非线性磁化率的传输线(例如光纤)的相干态的演变。用相干态的量子力学描述的激光束在通过非线性介质时会经历各种复杂的改变,包括量子态的崩溃和复活。在任何线性或非线性的演变中,耗散总是会发生。耗散效应通常导致振幅的减小,但是,如果相互作用发生在原子尺度上,量子效应就会很显著 19。非线性相干态是标准相干态最突出的概括之一 20 。一个合适的问题是:如果初始相干态的时间演化受到时间相关谐振子哈密顿量的影响,并与时间相关外部附加势 21 – 24 耦合,会发生什么情况?时间相关谐振子有很多种,例如参数振荡器 11、25 、卡尔迪罗拉-卡奈振荡器 26、27 和具有强脉动质量的谐振子 28 。
辛对称性,这是著名的Bohigas-Giannoni-Schmit (BGS)猜想的内容[8]。BGS猜想目前在半经典理论中已经得到充分证实,适用于具有适当经典极限的系统[9–11],并得到许多不同量子系统中大量数值和实验证据的支持[12–14]。多体量子系统中的情况尚不清楚,尽管最近取得了一些理论进展[15–17]。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常假设BGS猜想对多体量子系统也成立,这主要基于数值结果,但仍然缺乏严格的推导。可积通用极限与混沌通用极限之间的转变是非通用的,取决于所研究特定系统的特性,尽管已针对不同系统进行了非常详细的研究 [18,19]。例如,在可积和混沌正交情况之间的转变中,一些系统呈现分数能级排斥,P ( s ) ∝ s β,β 的值在可积情况β = 0 和相应的 RMT 集合值β = 1 之间连续变化,而其他系统呈现满能级排斥,但仅限于一部分能级 [20]。许多系统,特别是在多体情况下,都表现出前一种行为。然而,Berry 和 Robnik 的半经典转变理论预测了后一种行为 [19]。在这种情况下,P (0) = F,其中 F 由所考虑模型的经典极限在相空间中的规则轨道分数给出。在开放量子系统中,该理论的发展程度要低得多,即使第一批结果在 BGS 猜想提出后不久就出现了 [21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子的时间演化。在马尔可夫近似中,刘维尔算子是一个线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22]。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。解决这个问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布非常吻合 [21]。在混沌极限中,对于较小的 s 值,会出现普遍的立方排斥力 P ( s ) ∝ s 3,就像非厄米随机矩阵的 Ginibre 系综 [23] 中的情况一样,尽管完整的 P ( s ) 分布的细节取决于非厄米矩阵的对称性 [24, 25]。对于开放的量子自旋链,从可积到混沌转变过程中的能级间距分布已通过具有谐波约束的静态二维库仑气体拟合,其中能级排斥力由温度的倒数给出,表现出转变过程中的分数能级排斥力 [26]。最近,由于发现了新的可积多体刘维尔函数家族 [27–29],需要采用不同的方法来研究开放量子系统的可积和混沌性质。扩展精确可解和量子可积刘维尔函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌刘维尔函数复谱的统计特性 [30,31]。然而,物理多体刘维尔函数中精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在这封信中,我们将扩展参考文献中的模型。 [28] 基于 SU(2) 自旋 1 Richardson 模型,将其转换为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 家族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后,我们根据单个参数定义一个 Liouvillian,它在可积性和完全混沌极限之间进行插值。利用这些模型 Liouvillians,我们
最近邻间距分布遵循一维泊松分布P(s)=e−s[7],而混沌系统则表现出能级排斥力,其P(s)根据其对称性类接近于随机矩阵理论(RMT)的维格纳猜测,当s较小时,P(s)∝sβ,其中对正交、酉和辛对称,β=1,2,4,这是著名的Bohigas-Giannoni-Schmit(BGS)猜想的内容[8]。BGS猜想现在在半经典理论中得到了很好的证实,适用于具有适当经典极限的系统[9-11],并得到许多不同量子系统中大量数值和实验证据的支持[12-14]。多体量子系统的情况则不太清楚,尽管最近取得了一些理论进展 [ 15 – 17 ] 。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常,BGS 猜想被认为对多体量子系统也成立,这主要基于数值结果,但仍缺乏严格的推导。可积和混沌通用极限之间的转变是非通用的,取决于所研究的特定系统的特性,尽管已针对不同系统进行了非常详细的探索 [ 18 , 19 ] 。例如,在可积与混沌正交情况之间的转变中,一些系统表现出分数能级排斥,P(s)∝sβ,β值在可积情况β=0与对应的RMT系综值β=1之间连续变化,而其他系统则表现出满能级排斥,但仅限于一部分能级[20]。许多系统,特别是多体情况,表现出前一种行为。然而,Berry和Robnik的半经典转变理论预测了后一种行为[19]。在这种情况下P(0)=F,其中F由所考虑模型的经典极限的相空间中规则轨道的分数给出。在开放量子系统中,该理论的发展要落后得多,即使第一批结果是在BGS猜想提出后不久就出现的[21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子随时间演化的特征。在马尔可夫近似下,刘维尔算子是线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22] 。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。该问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布符合得很好 [21] 。在混沌极限中,对于较小的s值,存在普遍的立方斥力P(s)∝s3,就像在非厄米随机矩阵的Ginibre系综中一样[23],尽管完整P(s)分布的细节取决于非厄米矩阵的对称性[24,25]。对于开放量子自旋链,从可积到混沌的转变中的能级间距分布可以通过具有谐波约束的静态二维库仑气体来拟合,其中能级斥力由温度的倒数给出,表现出转变中的分数能级斥力[26]。最近,由于发现了新的可积多体刘维尔粒子家族[27-29],人们需要采用不同的方法来研究开放量子系统的可积和混沌特性。扩展精确可解和量子可积的 Liouvil 函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌 Liouvil 函数复谱的统计特性 [ 30 , 31 ] 。然而,在物理多体 Liouvil 函数中,精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在本文中,我们将基于 SU(2) 自旋 1 Richardson 模型的文献 [ 28 ] 模型扩展到有理 Richardson-Gaudin (RG) 类可积模型中的可积线。这种新的可积 Liouvil 函数族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们