Teledyne Relays 早期参与太空飞行应用,这使我们能够参与载人航天的许多重大成就。我们的机电继电器和 RF 同轴开关曾经用于主要运载火箭,目前仍在使用;Delta III、Arian IV、Arian V 和 VEGA 计划。此外,我们的继电器还参与近太空和深太空探索,机电继电器目前在火星探测器上漫游火星表面,并在火星科学实验室上前往红色星球。我们的机电继电器目前正在卡西尼号航天器上绕土星运行,我们的 RF 同轴开关正在新视野号航天器上前往冥王星。除了参与无人驾驶计划外,我们还提供用于载人计划的高可靠性产品。我们的机电继电器用于国际空间站的各个组件,我们的射频同轴开关在航天飞机的通信系统中发挥了重要作用。
图 5.6(b) 继电器处 b -c 故障时 So 和 Sr 的幅值平方。70 图 5.7(a) 继电器处 c -a 故障时 Sbc 和 Sab 之间的角度差。71 图 5.7(b) 继电器处 c -a 故障时 So 和 Sr 的幅值平方。71 图 5.8(a) 继电器后方 a -b 故障时 Sbc 和 Sab 之间的角度差。72 图 5.8(b) 继电器后方 a -b 故障时 So 和 Sr 的幅值平方。72 图 5.9(a) 继电器后方 b -c 故障时 Sbc 和 Sab 之间的角度差。73 图 5.9(b) 继电器后方 b -c 故障的 So 和 Sr 幅值平方。73 图 5.10(a) 继电器后方 c -a 故障的 Sbc 和 Sab 之间的角度差。74 图 5.10(b) 继电器后方 c -a 故障的 So 和 Sr 幅值平方。74 图 5.11(a) 距离继电器 50 km 的 a -b -c 故障的 Vxy 和 Vzy 之间的角度差。76 图 5.11(b) 距离继电器 50 km 的 a -b -c 故障的 So 和 Sr 幅值平方。76 图 5.12(a) 距离中继器 100 km 的 -b -c 故障的 Vxy 和 Vzy 之间的角度差。77 图 5.12(b) 距离中继器 100 km 的 -b -c 故障的 So 和 Sr 的幅值平方。77 图 5.13(a) 距离中继器 190 km 的 -b -c 故障的 Vxy 和 Vzy 之间的角度差。78 图 5.13(b) 距离中继器 190 km 的 -b -C 故障的 So 和 Sr 的幅值平方。78 图 5.14(a) 距离中继器 50 km 的 -g 故障的 S1 和 S2 之间的角度差。80 图 5.14(b) 距离中继器 50 公里的 -g 故障的 So 和 Sr 的震级平方。8180 图 5.15(a) 距离中继器 100 公里的 b -g 故障的 S1 和 S2 之间的角度差。81 图 5.15(b) 距离中继器 100 公里的 b -g 故障的 So 和 Sr 的幅度平方。
保护功能 相过流 50/51 方向相过流 67 接地故障过流 50N/51N 方向接地故障 67N 瞬时接地故障 67NI 电容器组不平衡 51C 断线 46 I2/I1 冷负荷启动 H2 检测 68H2 H5 检测 68H5 冷负荷启动 59 断路器故障 50BF 开关闭合至故障 (SOTF) 方向有功功率不足 37P 故障定位器 21FL 重合闸 79 相欠流 37 启动时间过长,转子堵转 48/51LR 电机重启抑制 66 电容器过压 59C 负序过流 46 开关闭合至故障 (SOTF) 50/51 过压 59 欠压 27 正序欠压 27P 接地故障过压 59N 欠频 81/81N 频率变化率 81R同步检查 25 闭锁继电器 86 CT 监控 60 VT 监控 60 可编程阶段 99 8 可编程曲线
本文旨在利用物联网 (IoT)、WiFi 模块、继电器模块和其他外围设备设计和构建智能门锁系统,为人们提供无与伦比的家庭入口控制和可访问性。传统门锁系统速度慢、不安全且易受攻击,需要人工干预才能锁定和解锁。因此,基于 IoT 的智能门锁系统提供了性能更好的适当锁保护机制。该系统包括微控制器 (NodeMCU ESP8266)、电磁锁、直流电池 (12V)、5V 3A 降压转换器 (LM7805)、WiFi 模块和开关设备 (继电器)。使用 3 个独立设备对系统设置进行了 10 次试验测试。所有试验都准确地解释了收到的命令并将相应的信号传输到接口的继电器模块。随后,继电器模块对集成电磁锁机构执行锁定/解锁操作,从而实现了研究的预期目标。
如图 1 所示,继电器系统首先将输入信号降低到较低水平。此步骤或过程源于这些设备需要使用与其机电和静态前身相同的输入信号电平。鉴于基于微处理器的继电器技术迅速被接受,我们现在可以研究其输出信号电平与新继电器直接兼容的仪表传感器。稍后我们将展示,移除高电平信号输出可获得显著的性能和应用优势。接下来让我们研究导致新低功率输出技术发展的仪表传感器的发展。
P34=0 数字输入 DI1 停用 P34=1 输入 DI1 用作门开关。- 风扇立即停止, - 制冷 3 分钟后停止, - P35 运行结束后将发出警报,警报继电器和蜂鸣器将激活,制冷开关再次打开。P34=2 数字输入 DI1 用作警报输入。P35 运行结束后,警报继电器和蜂鸣器将激活。P34=3 控制设定点 2(夜间设定点)处于活动状态。P34=4 通过时间开关或类似装置进行外部除霜。除霜循环将根据时间或温度启动和终止。循环启动后,在使用 P35 设置的时间内无法启动其他循环。P34=5 控制器单元 oFF。所有控制功能将被禁用,显示屏显示“oFF”。这样可以关闭设备而不在网络中发出警报消息。继电器 1-3 被停用,警报继电器保持在中立位置。
§ 通过 ENGAGE 功能实现门周围解决方案 § 内置蓝牙和 Wi-Fi § 配备 Schlage MTB11 或 MTB15 读卡器(所需读卡器接口 RS-485)§ 支持 No-Tour § 灵活的连接选项:通过 ENGAGE 网络和移动应用程序或我们的 PACS 提供商之一进行管理 § 输入:门位置 (DPS)、退出请求 (REX)、进入请求 (REN)、远程释放 (REL) § 输出:锁继电器、报警继电器、辅助 (Aux) 继电器 § 输入功率:12 或 24 VDC 或以太网供电 (PoE/PoE+) § 提供直流输出电源和干式控制触点
抽象量子密钥分布(QKD)旨在提供一种在理论上安全的分发秘密密钥的方法。但是,实际设备可能不会遵循理论假设,这为窃听者提供了一个后门。单光子检测器被认为是QKD系统中最脆弱的部分。测量设备独立(MDI)协议提供了一种方法,可以通过在准备好的状态上共同引入不信任的继电器执行钟形测量来删除所有检测器侧通道。继电器也可以用作量子网络的中心节点,该网络允许量子通信无信任的继电器或点对点通信,这很难扩大。
UPS-APC-CARD 也称为 APC 继电器 I/O 智能插槽卡,是一种支持干触点(继电器)的 UPS 管理卡。它设计用于 UPS-APC-3000-230R、UPS-APC-3000-230T 和 UPS-APC-4500-230T 不间断电源装置。此卡允许您使用干触点(继电器)支持监控外部触发器并启动外部设备的操作。它安装在智能插槽中,这是某些 APC UPS 型号上的专用扩展插槽。UPS-APC-CARD 是管理和维护 UPS 系统的强大工具,允许您监控和控制 UPS 及连接设备的各个方面。它是确保 UPS 系统可靠高效运行的重要组成部分。