摘要:在这篇观点文章中,我们表明,基于信息理论措施的形态空间可以是将生物学剂与人工智能(AI)系统进行比较的有用构造。该空间的轴标记了三种复杂性:(i)自主神经,(ii)计算和(iii)社会复杂性。在这个空间上,我们绘制了细菌,蜜蜂,秀丽隐杆线虫,灵长类动物和人类等生物学剂;以及AI技术,例如深神经网络,多代理机器人,社交机器人,Siri和Watson。基于复杂性的概念化为识别定义特征和有意识和智能系统的类别提供了有用的框架。从评估意识和清醒的意识的认知和临床指标开始,我们询问AI和合成工程的生命形式如何衡量同源指标。我们认为,意识和清醒源于计算和自主性复杂性。此外,从认知机器人技术中挖掘见解,我们研究了意识在进化游戏中的功能作用。这表明描述意识的第三种复杂性,即社会复杂性。基于这些指标,我们的形态空间提出了除生物学以外的其他意识的可能性。即合成,基于组和模拟。这个空间提供了一个常见的概念框架,用于比较特质和突出设计原理。
第1天是上午10点至下午5点(当地时间),将包括货运和个人流动性主题的演示,讨论会议和网络休息。TSIG委员会还将分享他们在系统思维和运输方面工作的思考和经验,并将举行TSIG商务会议。
新技术在提高联合国维和特派团的效率方面具有巨大潜力,因为它们需要在日益复杂的实地环境中应对越来越多的任务。1 近期有关维和新技术的讨论大多围绕无人驾驶飞行器 (UUAV) 和其他尖端航空技术的使用。2 然而,对无人驾驶飞行器关注过度则掩盖了另一类技术,几十年来,这类技术已帮助维和人员提高了效率,并且其潜力每年都在增长:卫星图像和地理信息系统 (GIS)。若要了解这类技术在维和中的用途,只需看看前联合国塞拉利昂特派团 (UNAMSIL) 部队指挥官丹尼尔·奥潘德中将的经历。他曾说过:“地理信息已被认为是士兵最重要的武器,仅次于枪支。这项任务最初在行动中遇到了很多挫折,因为没有地形图来制定准确的行动计划或命令,因此叛军很容易伏击那些对行动责任区知之甚少且没有地图的外国维和人员。”3
亚利桑那州CTE专业技能与CTE技术计划标准集成在一起。专业技能专栏映射到标准测量标准和核心行动。标题始于专家/领导者,并晋升为新手权。满足基础技能后,教师应使用专栏来帮助衡量学生的进步。高中生应努力在毕业前提高熟练程度或更高的能力。
国际危机组织联合国主任理查德·戈万表示,以色列长期以来一直“对联黎部队未能阻止真主党在利塔尼河以南建立强大阵地感到沮丧”。戈万补充道:“我怀疑以色列会认为,要么赋予联黎部队更强有力的权力来对付真主党,要么部署一支新的非联合国指挥的部队来保卫黎巴嫩南部。”
聚合物,由Intexter-UPC(西班牙Terrassa)设计和制造的机器,由于机器的概念完全开放,因此可以根据需要更改过程参数。对结构的新贡献一直是圆柱转子作为收集电极,它将允许直接获得所需的面纱。基本组件由一个毛细管组成,通过该毛细管将聚合物溶液被排出,该毛细管具有高压源,具有两个电极,可通过溶液熄灭的位置连接一个电极,另一个将纤维放置在收集器板上[11]。它可以以不同的形式开发,在我们的情况下,收集器将放置在毛细管的顶部,避免可能的溶液掉落并损坏膜(图1)。
摘要 印度尼西亚在英语教学中越来越多地使用人工智能工具,但其实施和影响尚未完全了解。本研究探讨了印度尼西亚英语作为外语 (EFL) 教师如何将人工智能 (AI) 技术融入教学,他们对这些工具的有效性的看法以及他们面临的障碍。通过半结构化访谈采用定性方法采访了印度尼西亚的五名英语作为外语 (EFL) 教师。数据分析表明,教育工作者使用 Grammarly、Google Translate、ChatGPT 和 Claude AI 等人工智能工具来提供反馈、帮助理解和创建内容。这些工具被认为有利于提高学生的写作能力和热情,尽管有人担心过度依赖、学术诚信以及阻碍批判性思维和真正学习的可能性。障碍包括对工具、技术设置和学生准备程度的限制。该研究强调了在英语教学中使用人工智能工具的优势,并强调了公平和评价性地纳入它们的重要性。教师应鼓励建构主义教学技术来激发认知参与和数字能力,确保人工智能资源补充而不是替代真正的学习。建议未来研究道德和教育影响。关键词:人工智能、英语作为外语 (EFL)、语言教育、教育技术、印度尼西亚、定性研究、教师看法、挑战、道德考虑。如何引用 Rahman, MA (2024)。探索人工智能在印度尼西亚英语作为外语教育中的整合。教学法:英语语言教学杂志,12 (2)。196-212 DOI:10.32332/joelt.v12i2.9549。期刊主页 https://e-journal.metrouniv.ac.id/index.php/pedagogy 这是一篇根据 CC BY SA 许可开放获取的文章 https://creativecommons.org/licenses/by-sa/4.0/
运输业是温室气体排放的重要来源,推动了向电动汽车的转变。然而,由于需要重型电池组,电动汽车的续航里程有限。减少这种重量的一种方法是通过多功能材料,例如层压结构电池 (SB),它将结构完整性与能量存储结合在一起。层压 SB 由嵌入多功能聚合物基质(称为结构电解质)的碳纤维组成。在这里,碳纤维提供结构支撑、充当电极和集电器,而结构电解质则实现离子传导和机械负载传递。本论文探讨了不同的结构电解质成分和加工条件如何影响多功能特性,重点是将它们集成到层压 SB 中。该研究证明了热引发聚合诱导相分离的有效性,可生产具有双连续聚合物-液体电解质(即结构电解质)的全电池层压 SB。这些电解质具有影响离子电导率和储能模量的多种形态,呈现出更安全、更环保的配方,并具有足够的结构电极性能。长期研究表明,结构电解质配方对结构电极性能有影响,以及在重复充电/放电下纤维基质粘附性会受到怎样的影响。最后,我们展示了一种最先进的 SB,在两个电极中都使用了纤维,实现了能量密度和机械性能之间的完美平衡。这项工作为 SB 技术的未来发展奠定了基础,确定了增强多功能性能的挑战和机遇。