人类的手在动物界中独一无二,拥有无与伦比的灵活性,从复杂的抓握到精细的手指个体化。大脑如何表示如此多样化的动作?我们使用皮层脑电图和降维方法评估了人类“抓握网络”中尺度神经动力学,以了解一系列手部动作。令人惊讶的是,我们发现抓握网络同时表示手指和抓握动作。具体而言,表征多区域神经协方差结构的流形在该分布式网络的所有运动中都得以保留。相反,该流形中的潜在神经动力学令人惊讶地特定于运动类型。将潜在活动与运动学对齐可以进一步发现不同的子流形,尽管运动之间的关节协同耦合相似。因此,我们发现,尽管在分布式网络层面上保留了神经协方差,但中尺度动力学被划分为特定于运动的子流形;这种中尺度组织可能允许在一系列手部动作之间进行灵活切换。
人类的手在动物界中独一无二,拥有无与伦比的灵活性,从复杂的抓握到精细的手指个体化。大脑如何表示如此多样化的动作?我们使用皮层脑电图和降维方法评估了人类“抓握网络”中尺度神经动力学,以了解一系列手部动作。令人惊讶的是,我们发现抓握网络同时表示手指和抓握动作。具体而言,表征多区域神经协方差结构的流形在该分布式网络的所有运动中都得以保留。相反,该流形中的潜在神经动力学令人惊讶地特定于运动类型。将潜在活动与运动学对齐可以进一步发现不同的子流形,尽管运动之间的关节协同耦合相似。因此,我们发现,尽管在分布式网络层面上保留了神经协方差,但中尺度动力学被划分为特定于运动的子流形;这种中尺度组织可能允许在一系列手部动作之间进行灵活切换。
我们制定了良好的连续时间生成流量,用于学习通过F-差异的近端正规化在低维歧管上支持的分布。wasserstein-1近端运算符调节f- ddiverences可以比较单数分布。同时,Wasserstein-2近端运算符通过添加最佳运输成本(即动能惩罚)来使生成流的路径正规化。通过均值野外游戏理论,我们表明这两个接近物的组合对于配制良好的生成流量至关重要。可以通过平均场游戏(MFG)的最佳条件,汉密尔顿 - 雅各布(HJ)的系统以及向前连续性偏微分方程(PDE)的最佳条件进行分析,其解决方案表征了最佳生成流。对于在低维流形的学习分布中,MFG理论表明,Wasserstein-1近端解决了HJ终端状况,而Wasserstein-2近端是针对HJ动力学的,这既是相应地向后的PDE系统,都可以很好地置于范围内,并且是一个独特的范围。这意味着相应的生成流也是唯一的,因此即使在学习在低维流形的高维分布方面,也可以以强大的方式学习。通过对持续时间流的对抗训练来学习生成流,这绕开了对反向模拟的需求。我们证明了我们的方法生成高维图像的功效,而无需诉诸自动编码器或专业体系结构。
我们介绍了 Geomstats,一个用于非线性流形计算和统计的开源 Python 工具箱,例如双曲空间、对称正定矩阵空间、变换李群等等。我们提供面向对象且经过广泛单元测试的实现。除此之外,流形还配备了黎曼度量族,以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了在流形上进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持,即 NumPy、PyTorch 和 TensorFlow,从而实现 GPU 加速。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块来促进微分几何和统计学的研究,并使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
我们介绍了 Geomstats,这是一个开源 Python 包,用于对非线性流形(例如双曲空间、对称正定矩阵空间、变换李群等)进行计算和统计。我们提供面向对象且经过大量单元测试的实现。流形配备了黎曼度量系列以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了对流形进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持——即 NumPy、PyTorch 和 TensorFlow。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块,既可以促进微分几何和统计学的研究,又可以使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
摘要。每种蛋白质都由一个由 20 个字母/氨基酸组成的线性序列组成。该序列通过二级(局部折叠)、三级(键)和四级(不相交的多重)结构在三维空间中展开。我们之前发表的两篇论文中,利用有限群 G n := Z n ⋊ 2 O(n = 5 或 7,2 O 为二元八面体群)的(信息完整)不可约特征,可以预测线性链的 20 个字母的遗传密码的存在。事实证明,一些蛋白质复合物的四级结构表现出 n 重对称性。我们提出了一种基于自由群理论的二级结构方法。将我们的结果与其他根据 α 螺旋、β 片层和卷曲或更精细的技术预测蛋白质二级结构的方法进行了比较。结果表明,蛋白质的二级结构与某些双曲 3 流形的结构相似。体积最小的双曲 3 流形(Gieseking 流形)、其他一些 3 流形和定向超制图群被选为此类二级结构的暂定模型。对于四级结构,存在与 Kummer 表面的联系。
摘要 — 机器学习界对解决对称正定 (SPD) 流形上的域自适应问题表现出越来越浓厚的兴趣。这种兴趣主要源于脑信号生成的神经成像数据的复杂性,这些数据通常会在记录会话期间表现出数据分布的变化。这些神经成像数据以信号协方差矩阵表示,具有对称性和正定性的数学性质。然而,应用传统的域自适应方法具有挑战性,因为这些数学性质在对协方差矩阵进行运算时可能会被破坏。在本研究中,我们介绍了一种基于几何深度学习的新型方法,该方法利用 SPD 流形上的最佳传输来管理源域和目标域之间边缘分布和条件分布的差异。我们在三个跨会话脑机接口场景中评估了该方法的有效性,并提供了可视化结果以获得进一步的见解。该研究的 GitHub 存储库可通过 https://github.com/GeometricBCI/Deep-Optimal-Transport-for-Domain-Adaptation-on-SPD-Manifolds 访问。
本章介绍了振动系统的非线性正常模式(NNM),作为相位空间的不变流形,以及它们用于降低非线性结构的模型顺序。nnms被定义为线性正常模式的延续,通过将幅度的主体特征空间的子集实施相切。保守和阻尼动力学以及NNM是时间依赖的强制系统。使用用于不变歧管的参数化方法的系统过程是为其计算而设计的,直接从物理空间运行,并直至任意扩展顺序。在学术示例中的应用显示,以突出该方法处理硬化/软化行为,折叠式歧管的存在和超谐共振的能力。在每种情况下,都会得出具有最小维度和出色精度的降低模型。
摘要:背景:记录脑机接口的校准数据是一个费力的过程,对受试者来说是一种不愉快的体验。域自适应是一种有效的技术,它利用来自源的丰富标记数据来弥补目标数据短缺的问题。然而,大多数先前的方法都需要首先提取脑电信号的特征,这会引发 BCI 分类的另一个挑战,因为样本集较少或目标标签较少。方法:在本文中,我们提出了一种新颖的域自适应框架,称为基于核的黎曼流形域自适应 (KMDA)。KMDA 通过分析脑电图 (EEG) 信号的协方差矩阵来绕过繁琐的特征提取过程。协方差矩阵定义了一个对称正定空间 (SPD),可以用黎曼度量来描述。在 KMDA 中,协方差矩阵在黎曼流形中对齐,然后通过对数欧几里德度量高斯核映射到高维空间,其中子空间学习通过最小化源和目标之间的条件分布距离同时保留目标判别信息来执行。我们还提出了一种将 EEG 试验转换为 2D 帧(E 帧)的方法,以进一步降低协方差描述符的维数。结果:在三个 EEG 数据集上的实验表明,KMDA 在分类准确度方面优于几种最先进的领域自适应方法,BCI 竞赛 IV 数据集 IIa 的平均 Kappa 为 0.56,BCI 竞赛 IV 数据集 IIIa 的平均准确度为 81.56%。此外,使用 E 帧后整体准确度进一步提高了 5.28%。 KMDA 在解决主体依赖性和缩短基于运动想象的脑机接口校准时间方面显示出潜力。
数据敏感度量自然出现在机器学习中,并且在一些著名方法中起着核心作用,例如 k-NN 图方法、流形学习、水平集方法、单链接聚类和基于欧氏 MST 的聚类(详情见第 5 节和附录 A)。构建合适的数据敏感度量是一个活跃的研究领域。我们考虑一个简单的数据敏感度量,它有一个底层流形结构,称为最近邻度量。该度量最早在 [CFM + 15] 中引入。它及其近似变体在过去已被多位研究人员研究过 [HDHI16、CFM + 15、SO05、BRS11、VB03]。在本文中,我们展示了如何精确计算任意维度的最近邻度量,这解决了任何基于流形的度量最重要和最具挑战性的问题之一。