何文伟博士现为斯坦福大学理论物理研究所博士后学者,研究非平衡量子多体现象和新兴量子技术的应用。此前,他是哈佛大学的摩尔博士后研究员,与 Mikhail Lukin 教授和 Eugene Demler 教授一起工作。从 2022 年 8 月开始,他将担任新加坡国立大学校长青年(助理)教授。何文伟于 2017 年在日内瓦大学师从 Dmitry Abanin 教授获得博士学位,2015 年在滑铁卢大学/圆周研究所师从 Guifre Vidal 教授获得理学硕士学位,2013 年在普林斯顿大学获得学士学位,与 Duncan Haldane 教授一起工作。摘要:普遍性是指复杂系统普遍属性的出现,这些属性不依赖于精确的微观细节。量子热化是强相互作用量子多体系统非平衡动力学的一个例子,其中局部区域随着时间的推移变得由吉布斯集合很好地描述,而该集合仅受少数几个系统参数(例如温度和化学势)控制。局部区域与其补体(“浴”)之间产生的大量纠缠是这种普遍性出现的关键。在这次演讲中,我将介绍一种新的普遍行为,它源于某些类型的量子混沌多体动力学,超越了传统的热化。我将描述单个多体波函数如何编码由小子系统支持的纯态集合,每个纯态都与局部浴的(投影)测量结果相关。然后,我将展示这些量子态的分布如何接近均匀随机量子态的分布,即集合形成量子信息理论中所谓的“量子态设计”。我们的工作为研究量子混沌提供了一个新视角,并在量子多体物理、量子信息和随机矩阵理论之间建立了桥梁。此外,它还提供了一种实用且硬件高效的伪随机态生成方法,为设计量子态层析成像应用和近期量子设备的基准测试开辟了新途径。
实收资本额时不在此限;另视公司营运需要及法令规定提列特别盈余公积,如尚有盈余并同期初未分配盈余,由董事会拟具盈余分配案,以发行新股方式为之时,应提请股东会决议后分派之。 本公司依公司法规定,授权董事会以三分之二以上董事之出席,及出席董事过半数之决议后,将应分派股息及红利或公司法第二百四十一条第一项规定之法定盈余公积及资本公积之全部或一部以发放现金之方式为之,并报告股东会。股利分派比例如下: 当年度拟分派盈余数额不得低于累积可分配盈余之百分之五十;现金股利,不得低于股利总额之百分之十。 员工酬劳发给股票或现金之对象,得包括符合一定条件之控制或从属公司员工。 第七章附则第三十条:本公司组织规程及办事细则另定之。 第三十一条:本章程未订事项,悉依公司法及其他法令规章办理。
页次壹、开会程序..................................................... 1 贰、开会议程..................................................... 2 叁、选举事项..................................................... 3 肆、其他议案..................................................... 3 伍、临时动议..................................................... 3 陆、散会......................................................... 3 附件ㄧ、 董事(含独立董事)候选人名单............................... 4 二、 董事候选人兼任其他公司之职务明细表........................ 6 附录ㄧ、 公司章程................................................. 8 二、 股东会议事规则........................................... 14 三、 董事选任程序............................................. 22 四、 全体董事持股情形......................................... 25
(c)浸入量子自旋液体中的磁液滴[15]; (d)磁电材料表面上方的单个电荷,Cr 2 O 3,诱导表面下方的图像单极,然后图像单子在表面上方产生理想的单极磁场[20]。
2024年11月6日 — 获得参加国防部竞标资格。(各部委统一资格)。 “商品制造”。 “商品销售”。 “服务... 主题/规格等。 单位数量。 单价。 金额。 备注。 校准以下两项电子天平。 000,000。 以下...
这种教材的创建是为了帮助人们更熟悉科学,专注于与宇宙的联系。我们不能对使用本教材造成的任何事故或其他事故承担任何责任,因此请在经验丰富的教练的指导下使用本材料。
最近,扩散模型已成为强大的生成模型类别。尽管他们成功,但对他们的语义空间的理解仍然有限。这使得在没有其他培训的情况下,获得精确且脱节的图像生成,尤其是以无监督的方式而挑战。在这项工作中,我们从有趣的观察中提高了对它们的语义空间的理解:在一定范围的噪声水平中,(1)扩散模型中学习的后均值预测指标(PMP)是局部线性的,(2)其Jacobian的单数矢量位于其低度语义语义下集中。我们提供了坚实的理论基础,以证明PMP中的线性和低级别的合理性。这些见解使我们能够提出一种无监督的,单步的,无训练的LO W-rank Co n-trollable图像编辑(LOCO编辑)方法,用于在扩散模型中精确局部编辑。LOCO编辑确定了具有良好属性的编辑说明:同质性,可传递性,合成性和线性性。Loco编辑的这些属性从低维语义子空间中受益匪浅。我们的方法可以进一步扩展到各种文本到图像扩散模型(T-Loco Edit)中的无监督或文本监督编辑。最后,广泛的经验实验证明了Loco编辑的有效和效率。可以在项目网站上找到代码和ARXIV版本。1
量子计算机具有增强机器学习的巨大希望,但是它们当前的量子计数限制了这一诺言的实现。为了应对这种限制,社区生产了一组技术,用于评估较小的量子设备上的大量子电路。这些技术通过评估较小的机器上的许多较小的电路来起作用,然后将其组合成多项式,以复制较大的machine的输出。此方案需要比通用电路更实用的电路评估。但是,我们调查了某些应用程序的可能性,许多这些子电路都是多余的,并且较小的总和足以估计全电路。我们构建了一个机器学习模型,该模型可能是近似较大电路的输出,并且电路评估要少得多。使用模拟量子计算机比数据维度小得多,我们成功地将模型应用于数字识别的任务。该模型还应用于将随机10量子PQC近似于5量子计算机的随机10量子PQC,即使仅使用相对较少的电路,我们的模型也可以准确地近似于10 Qubit PQC的输出,而不是神经网络尝试。开发的方法可能对于在NISQ时代实现较大数据的量子模型可能很有用。