如果任何 m 个量子比特的约化密度矩阵被最大程度地混合,则称纠缠态为 m -均匀。这与纯量子纠错码 (QECC) 密切相关,后者不仅可以纠正错误,还可以识别错误的具体性质和位置。在这里,我们展示了如何使用局域门或相互作用创建 m -均匀状态,并阐明了几种 QECC 应用。我们首先表明 D 维簇状态是 m -均匀的,其中 m = 2 D 。这种零相关长度簇状态对其 m = 2 D 均匀性没有有限大小校正,这对于无限和足够大但有限的晶格都是精确的。然而,在每个 D 维度中晶格扩展的某个有限值(我们将其限制)下,由于有限支撑算子缠绕在系统周围,均匀性会降低。我们还概述了如何使用准 D 维簇状态实现更大的 m 值。这为使用簇状态对量子计算机上的错误进行基准测试提供了可能性。我们在超导量子计算机上展示了这种能力,重点关注一维团簇状态,我们表明,它可以检测和识别 1 量子比特错误,区分 X、Y 和 Z 错误。
如果任何 m 个量子比特的约化密度矩阵被最大程度地混合,则称纠缠态为 m -均匀。这与纯量子纠错码 (QECC) 密切相关,后者不仅可以纠正错误,还可以识别错误的具体性质和位置。在这里,我们展示了如何使用局域门或相互作用创建 m -均匀状态,并阐明了几种 QECC 应用。我们首先表明 D 维簇状态是 m -均匀的,其中 m = 2 D 。这种零相关长度簇状态对其 m = 2 D 均匀性没有有限大小校正,这对于无限和足够大但有限的晶格都是精确的。然而,在每个 D 维度中晶格扩展的某个有限值(我们将其限制)下,由于有限支撑算子缠绕在系统周围,均匀性会降低。我们还概述了如何使用准 D 维簇状态实现更大的 m 值。这为使用簇状态对量子计算机上的错误进行基准测试提供了可能性。我们在超导量子计算机上展示了这种能力,重点关注一维团簇状态,我们表明,它可以检测和识别 1 量子比特错误,区分 X、Y 和 Z 错误。
8. 通讯地址 9. 类别 GEN/SC/ST/OBC/其他 请指定其他 10. 资格 BE / B.Tech. / M.Sc./其他 请指定其他 11. 资格年份 12. 专业/分支 13. 参加过任何国家级考试
可以使用完全合成的,分离的DNA-纳米动物模仿生物分子冷凝物,从而模仿相位分离,从而在几种功能性纳米材料中实现明显的控制和性能的增加。干细胞表现出控制和执行基因转录到RNA的大分子的突出簇,这也通过相分离机制形成。由于两亲性效应,被转录的基因可以展开甚至分散这些簇。在这里,我们用具有纳米固定剂的聚胸腺素尾巴部署两亲性DNA的纳米t,以重现由DNA-纳米动物形成的液滴的生物学观察到的诱导型。我们使用多能斑马鱼胚细胞中转录簇的超分辨率显微镜图像作为生物参考数据。延时显微镜,两亲性滴定实验和Langevin动力学模拟表明,将两亲 - 莫蒂夫添加到合成系统中会重现胚胎细胞中转录簇看到的形状变化和分散。我们的工作说明了生物模型系统的组织原理如何指导实施新的方法来控制合成纳米材料的介观组织。
• 为了实现通用性,至少需要 2D 集群状态、高斯运算和一个非高斯运算。 • 为了实现容错性,需要 3D 集群状态。 • 集群状态不需要一次性生成 - 一些节点可以同时生成,而其他节点则被测量消耗。
分布式系统正在在IT组织中广泛采用。这些系统中的监视故障,包括松散的耦合应用程序,很麻烦,需要手动关注。本研究重点是在运行Kafka的沙箱中实现异常检测,以自动检测故障。用于训练和测试模型,“混乱工程”用于将受控故障注入系统。由于沙盒当前不在负载下,因此创建了负载模拟器以模拟五种不同的方案:恒定负载,线性增加负载,线性减小负载,正弦负载和现实生活中的场景负载。该研究还研究了从5、10到未来30分钟的各种预测范围上预测指标的能力。预测模型显示出不同的性能结果,具体取决于沙箱上的当前负载和预测度量,因为一些指标显示出较高的波动性,从而导致预测性能较差。总体而言,增加预测范围会导致预测较差,但在合理的利润率之内。该研究得出的结论是,CPU使用度量对于现实生活中的模拟以及所有模型的正弦载荷表现最佳。对于线性增加,消费者组滞后的指标对于所有型号都是最好的。该度量在线性减少载荷期间也对LSTM表现最好。但是,KNN最好的指标是网络错误增加和内存使用量。隔离森林的最佳指标是主题偏移。在整体模型性能方面,KNN是现实生活模拟和线性增加负载的最佳选择。对于持续的模拟,Kafka延迟是LSTM和KNN的最佳指标,而网络错误最适合隔离林。隔离森林最适合正弦,线性减少和恒定模拟。该研究还得出结论,与常规负载模拟相比,沙盒中的混乱工程能够注入足够的误差,以使模型对负载的反应不同。本研究中引入的新方法提供了一种方法,用于使用混乱工程在测试环境中建立机器学习模型,而无需生产数据或现实生活中的使用。
在肠道中,一个细菌社区通过将食物转化为营养,捍卫人体免受致病感染以及与免疫和神经系统的通信来影响人类健康。1 - 3个研究人员发现,一个平衡和多样化的社区是监管免疫反应的关键。4,5因此,可以使用益生菌补充剂递送细菌来调节肠道社区以产生生物治疗效果。6,7个细菌细胞可以冷冻干燥以增加其保质期,同时也形成可以掺入口服补充剂中的粉末。8,9虽然在自由干燥过程中使用的加工条件,低温和压力可能对细胞有害,但细菌在材料中的包封封装在诸如,蛋白质,碳水化合物或聚合物之类的材料中可保护细胞在加工过程中的损害。其他技术 - 喷雾干燥,乳液,微流体,3D打印,挤出等。- 也已被用来封装各种聚合物中的细菌,以改善在加工,存储和使用过程中的细胞活力。6,10 - 13
器官或组织。某些子类,例如HAQP0、1、2、4和5,可以选择性地运输水,同时拒绝其他离子[6-12],这可以归因于独特的窄选择性滤波器,仅允许单个水分子易位。出现到通道入口时,水分子可以自动调整其自适应结合和方向,然后通过通道产生连续的水线/簇。此过程将伴随着几个小溶质的易位。,例如,HAQP3运输尿素,甘油和水分子。此外,在HAQP3中,Ni 2+与组氨酸241的结合可以带来与人类肺部疾病有关的Ni 2+敏感性[17]。
图 2。量子电路。 (a) 这是一个由三个量子比特组成的量子电路:首先,对第一个量子比特应用一个 Hadamard 门,将 |0 ⟩ 转换为 |+ ⟩ ,然后将 CNOT 门应用于第一和第二个量子比特,接着对量子比特 2 和 3 作用另一个 CNOT 门。每个量子比特都以 0/1 为基础读出。 (b) 生成一维三量子比特簇状态的电路。经过三个 Hadamard 门后,三个量子比特变为 |+ ⟩ ,成对的 CZ 门将它们转换为簇状态的链。 (c) 3×3 自旋阵列中二维簇状态的图示。这也作为 2d 簇状态的定义。 (d) 簇状态可以推广到任何图状态,其中成对的 CZ 门根据图中的边应用于一对量子位(最初在 |+ ⟩ 中)。
美国国会图书馆在版编目数据 Gershenhorn, Jerry. Melville J. Herskovits 和知识的种族政治 /Jerry Gershenhorn。p. cm。-(人类学史批判性研究)包括参考书目和索引。isbn 0-8032-2187-8(布碱性纸) 1. Herskovits, Melville J. (Melville Jean),1895-1963。2. 人类学家 - 美国 - 传记。3. 人类学家 - 西非 - 传记。4. 非裔美国人 - 人体测量学。5. 非裔美国人 - 社会生活和习俗。6. 人类学中的种族主义 - 美国。7. 文化相对主义 - 西非。8. 非洲人流散。9. 民族自决 - 西非。 10. 西非 – 社会生活和习俗。I. 标题。II. 系列。gn21 .h47 g47 2004 301 % .092–dc22 2003016335