霍乱是由革兰氏阴性细菌霍乱引起的急性腹泻病。小肠定植后,V。Cholerae产生一种肠毒素,引起液体和电解质的分泌,并导致无痛的水性腹泻。霍乱的特征是突然发作,偶尔呕吐的水状粪便突然发作。如果未治疗,严重的感染会在几个小时内杀死。但是,大多数感染霍乱葡萄球菌的人仍然无症状,其中一到25%的症状。有症状的人,大多数患有轻度或中度的疾病,而10-20%的患有严重疾病(世界卫生组织(WHO),2017年和2023a)。孵化期通常在两到五天之间,但可能只有几个小时。疾病的严重程度与摄入的霍乱链球菌的数量,先前的感染以及其他宿主和病原体因素(例如妊娠,营养不良,免疫功能低下的状态,产生胃酸的能力降低以及血液组O(WHO,2017年)。该疾病主要是通过摄入粪便污染的水或贝类和其他食物而流传的。人与人之间的传播可能通过粪便 - 口服路线发生。即使在感染区域中,旅行者的风险也很小。霍乱传播与不足的清洁水和卫生设施密切相关。该疾病的历史和流行病学有许多霍乱弧菌的血清群,但只有两种,01和0139引起爆发。V.霍乱O1造成了所有最近的暴发(WHO,2023a)。霍乱血清群O1由生物型(经典或El Tor)分类,并进一步分为亚型(Ogawa或Inaba)。始于1961年的电流(第七)全球大流行是由于El tor Biotype所致。el tor现在是全球最主要的生物型,在许多国家中是地方性的。在2022年,报告了24个国家(Who,2023a)的WHO WHO WHO WHO WHO的总共472,697例霍乱和2,349例死亡。这些报告被认为由于报告不足而严重低估了实际数字和
7:30 – 8:30 am Continental Breakfast Promenade Moderator: George Duncan Emerald III Ballroom 8:30 – 9:15 am A Magic Gene-CCR5-∆32- From Discovery to Clinical Benefit in a Generation Stephen O'Brien 9:15 – 10:00 am Forensic Investigative Genetic Genealogy (FIGG): Practical Guidance for Implementation and Workflow Claire Glynn, University of New Haven 10:00 - 10:30 AM休息前长廊10:30 - 11:00 AM更新有关案例工作的微观型号的更新,耶鲁大学肯尼斯·基德(Kenneth Kidd),11:00 - 11:30 AM最新关于人类识别的Nanobore测序Roxanne Zascavage Roxanne Zascavage,北德克萨斯大学健康科学中心11:30 - 12:00 PM Rapidific Sciential in Thermo Sciential forthe Secorial,Thermo Sciential iD Thermo Scientie,Thermo Scientie,Thermo Scientie,Thermo Scientie,Thermo fisher fistrific Fisherific Fisherific fillific Fisher, 1:00 pm Lunch The Atrium Moderator: Brian Young Emerald III Ballroom 1:00 – 1:30 pm Developmental Validation of a Novel Approach for Determining Time- Since-Deposition of Trace DNA Evidence Christopher Ehrhardt, Virginia Commonwealth University 1:30 – 2:00 pm Sex-Based Targeted Recovery of Cells in a Heterogeneous Mixture: Separating Male- and Female-Like Cells Michael Marciano, Syracuse University 2:00 – 2:30 pm Locus Allele Count: a Tool to Estimate the Number of Contributors in a DNA Mixture Marie-Pier Thibault, Laboratoire de sciences judiciaires et de médecine légale 2:30 – 3:00 pm Break Promenade Moderator: Bruce McCord Emerald III Ballroom 3:00 – 3:30 pm The Expanding Scope of Standards and Best Practice Recommendations for Forensic Testing Laboratories Using Human血清学和DNA测试方法夏洛特字
1 研究背景与目的· ... ·· ... ·· ... 20 4.4 氨的风险 ·· ... 27 5.3 氨气地上储存设施 ······································ 28 5.4 氨气作为汽车燃料 ··························································· 33 5.5 与船舶安全特性的比较 ···
免责声明 本出版物及其中的材料均按“原样”提供。IRENA 已采取一切合理的预防措施来验证本出版物中材料的可靠性。但是,IRENA 及其任何官员、代理、数据或其他第三方内容提供商均不提供任何明示或暗示的保证,并且对于使用本出版物或此处材料的任何后果,他们不承担任何责任或义务。此处包含的信息不一定代表 IRENA 所有成员的观点。提及特定公司或某些项目或产品并不意味着 IRENA 认可或推荐它们优于未提及的其他类似性质的公司或项目或产品。此处使用的名称和材料的呈现方式并不意味着 IRENA 对任何地区、国家、领土、城市或地区或其当局的法律地位,或对边界或边界的划定发表任何意见。
CCS Carbon capture and storage CCUS Carbon capture, utilisation and storage COAG Council of Australian Governments CSIRO Commonwealth Scientific and Industrial Research Organisation DBNGP Dampier Bunbury Natural Gas Pipeline DC Direct Current DG Dangerous Goods DNI Direct normal irradiance EP Environmental Protection EPA Environmental Protection Authority EPBC Environment Protection and Biodiversity Conservation EPC Engineering, Procurement and Construction EPCM Engineering, Procurement and建筑管理ERIA ERIA经济研究所在东亚和东亚ESG环境,社会和治理饲料前端工程和设计FP FREMANTLE POR GA GA PORT GA GHI GHI GHI全球水平辐照度GIA通用行业GNIC GEALDTON到Narngulu港口Narngulu港口环境HV高压IEA国际能源局ISO国际标准化组织
4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.
前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。
简单地说,绿色氢是通过使用可再生能量将水分成氢和氧气而产生的。绿色氨是由绿色氢制成的,其工艺也由可再生能源提供动力。绿色氢和氨的产生既有正面和负面的环境和社会影响。绿色氢(见表11.1)被视为全球向可持续能量和净零排放的全球温室自由能的主要载体。动量正在增长,以快速扩大绿色氢的产生,以满足IPCCC GHG减少靶标。它正在作为存储能源的一种选择(另请参阅第13章,有关其他储能选项),从具有基于氢的燃料的可再生能源可能会在长途运输(从拥有丰富能源资源的地区到数千公里远的地区)。以绿色氢的形式采用的绿色氨与绿色