简介cow -pea(Vigna unguiculata(L。)是一个重要的食物豆类,在全球热带和亚热带气候中生长。在各个地区,特别是在非洲,亚洲,中美洲和南美洲,它是用谷物,嫩叶和新鲜豆荚消耗的主食和多用途食品豆科植物(Alemu等,2016; Iftikhar等,2021)。cow豆产生饲料,饲料,干草和青贮饲料的牲畜,以及绿肥和覆盖农作物以维持土壤生产力(Alemu等,2016)。在农业系统中,它弥补了谷物吸收的氮的损失,从而改善了土壤质量。这与其固定大气氮的惊人能力有关,同时甚至在贫穷的土壤上表现良好(Belay等,2017)。该作物也有可能抑制杂草。作为一种耐旱和温暖的天气作物,在典型的热带低地气候中,它是一种有希望的食物和草料物种(Bilatu等,2012)。这种适应性的作物是
KARASAWA Toshihiko 博士是中央地区农业研究中心(NARO)有机/可持续种植小组的组长。他于 2001 年获得东北大学植物营养学博士学位。他的研究兴趣包括利用植物和土壤微生物的功能促进作物养分吸收。他证明,在 1993 年至 2005 年期间,改善作物轮作可增加本土丛枝菌根真菌的数量,并促进北海道旱地作物对磷的吸收。自 2007 年以来,他一直在筑波工作,致力于开发通过引入绿肥来减少化学肥料使用的技术。他曾于 2002 年获得日本农业科学奖、青年科学家成就奖,并于 2023 年获得日本土壤科学和植物营养学会奖。
● 确定气候变化的负面影响(与农业相关)并培训社区人员采取适应措施。 ● 培训农民和其他相关利益相关者进行气候智能型综合土地管理。 ● 在社区人员中建立能力并产生新知识,使他们能够更好地适应和保护社区免受极端气候条件的影响,包括热浪/寒潮、水盐度增加、洪水和其他挑战。 ● 培训农民进行土壤改良,包括使用绿肥、FYM、蚯蚓堆肥、动物粪便,以及何时和如何使用化学肥料来提高土地生产力。 ● 培训农民进行综合病虫害管理(IPM)和高效水资源管理。 ● 培训农民了解森林砍伐的负面影响并培养应对土地退化的技能,包括造林/重新造林、轮作、种植模式、种植强度、覆盖/覆盖作物种植。
摘要:全球人口大幅增加,对食物的需求也在增加。为了满足要求,使用现代技术正在种植和收获农作物。此外,粮食作物有一些非生物和生物因素的风险,主要是病原体(土壤或空气传播)。为了增强食品作物的产生,并减少了由生物因素造成的损害,农民社区增加了化肥,杀虫剂和农药的使用。但是,这些可以有效克服问题,但也可以使病原体具有抗药性,影响食物质量并污染环境。为了最大程度地减少致病性攻击并增强农作物的产量,需要适应环境友好的方式。土壤有机修订是抑制土壤传播病原体的最佳预防实践。改善土壤的物理,化学和微生物特征。某些有机修订会增强土壤颗粒,增加孔径,并降低土壤散装密度,从而影响土壤曝气和结构的积极作用。据报道,不同类型的有机修订,例如生物炭,动物粪便,绿肥和堆肥是有效的,可以对不同的病原体引起的疾病有效,并提高植物营养摄取能力并改善土壤健康。本评论的重点是使用不同的土壤有机修正案及其以自然和环保的方式抑制由土壤传播病原体引起的植物疾病的能力。
南亚的大米 - 小麦种植系统分别占全球大米和小麦生产的27%和16%,并维持超过1.29亿农民,其中大多数是小农户1。然而,由于气候变化的影响,该地区的大米和小麦产量趋势减慢或停滞了,这些负面影响预计在未来几十年中会恶化2。到2050年,南亚将成为最大的食品缺陷地区之一,因此需要大量生产来满足不断增长的粮食需求。作为解决这一即将发生的危机的一种潜在解决方案,气候智能农业(CSA)已被政府,研究人员以及粮食和农业组织广泛提倡。研究表明,CSA实践和技术可以增加农作物的产量,同时减少温室气体排放,并增加农业社区对气候冲击的弹性3,4。尽管有CSA的承诺,但大多数CSA实践和技术尚未在南亚5 - 7中被广泛采用。尽管有一些实践和技术已经使用了很长时间(例如,农作物多样化和绿肥),但尽管有证明其有效性,但许多其他实践和技术仍在努力获得动力(例如,零耕作,替代性润湿和干燥)。在这里,我们确定了南亚CSA实践和技术采用较低的关键原因,并提出了一系列有希望的策略,这些策略可能会增加其大规模的采用(图1)。
寄主抗性,29 减少作物病虫害的栽培措施,34 轮作,35 耕作和免耕,36 诱捕作物,38 绿肥和覆盖作物,38 复种或多种作物(间作),39 避难所,39 整合栽培管理计划,40 决策支持辅助和诊断系统,41 田间和区域,41 精准农业,43 诊断方法的使用,43 生物防治,46 生物农药产品的开发,47 昆虫生物防治,47 杂草生物防治,49 植物病原体的生物防治,包括线虫,50 增强生物防治的其他方法,52 农药,53 为什么农药仍然是一个关键组成部分?,53 农药的作用,55 改变杀菌剂、除草剂和杀虫剂化学成分,55 农药抗药性管理,61 综合害虫管理背景下的抗药性管理,62 抗药性管理策略和工具,63 认证和监管,65 IPM 认证,65 国际背景下的生态标签,67 IPM 监管,68 害虫管理信息决策支持系统,69 跨地区研究项目编号 4 (IR-4),69 入侵害虫的影响,69 入侵植物害虫的传播方式,71 当前入侵植物害虫问题的例子,71 旧植物害虫的重新出现,72 综合害虫管理和农业生物恐怖主义,73 附录 A. 缩写和首字母缩略词,73 附录 B. 词汇表,74 引用的文献,74 相关网站,81
MIDORI策略旨在将化学肥料的使用减少到2050年,这是其对可持续食品系统的愿景的一部分。为了实现这一目标,已经确定了两种关键方法:(1)用有机材料代替化肥,(2)提高化学肥料的利用效率。为了增强有机材料的有效利用,必须阐明其受精作用并应对与重型有机材料的运输和应用相关的挑战。已经开发了一种方法来根据土壤条件和有机材料的特征估算受精作用。为提高了运输和应用的易度性,已经开发了颗粒堆肥。绿色肥料是一种有机材料,在运输成本和施用劳动方面是有利的,也已被证明可以有效减少化肥的使用。然而,已经发现其受精效率因作物物种和绿肥的生长阶段而有所不同。为了最大化化学肥料的利用率,已经开发了局部化肥技术。此外,涉及养分循环的土著土壤微生物(例如参与磷供应的循环)在改善养分利用方面起着至关重要的作用。已经表明,这些有益的微生物可以通过结合绿色肥料和改善作物旋转来控制和利用。日本与欧盟之间的合作有望加速该领域的研究和创新。欧盟通过其农场与叉子战略具有相似的目标,也正在通过使用有机废物和精密农业来探索化学肥料的减少。
寄主抗性,29 减少作物病虫害的栽培措施,34 轮作,35 耕作和免耕,36 诱捕作物,38 绿肥和覆盖作物,38 复种或多种作物(间作),39 避难所,39 整合栽培管理计划,40 决策支持辅助和诊断系统,41 田间和区域,41 精准农业,43 诊断方法的使用,43 生物防治,46 生物农药产品的开发,47 昆虫生物防治,47 杂草生物防治,49 包括线虫在内的植物病原体的生物防治,50 增强生物防治的其他方法,52 农药,53 为什么农药仍然是一个关键组成部分?,53 农药的作用,55改变杀菌剂、除草剂和杀虫剂的化学成分,55 农药抗药性管理,61 综合害虫管理背景下的抗药性管理,62 抗药性管理策略和工具,63 认证和监管,65 IPM 认证,65 国际背景下的生态标签,67 IPM 监管,68 害虫管理信息决策支持系统,69 跨区域研究项目编号 4 (IR-4),69 入侵害虫的影响,69 入侵植物害虫的传播方式,71 当前入侵植物害虫问题的例子,71 旧植物害虫的重新出现,72 综合害虫管理和农业生物恐怖主义,73 附录 A. 缩写和首字母缩略词,73 附录 B. 词汇表,74 引用的文献,74 相关网站,81