如今,越来越多的应用和服务由大型数据中心托管。大量不规则的负载激增对数据中心的电力基础设施提出了挑战。因此,电力供应与需求之间的不匹配已成为现代数据中心的一个关键问题,这些数据中心要么供应不足,要么由间歇性电源供电。最近的提案采用了储能设备,如不间断电源 (UPS) 系统来解决这一问题,然而,目前的方法缺乏有效处理不规则和不可预测的电力不匹配的能力。在本文中,我们提出了混合能量缓冲 (HEB),这是第一个将超级电容器 (SC) 整合到现有数据中心以动态处理电力不匹配的异构自适应策略。我们的技术利用不同的能量吸收特性和智能负载分配策略来提供高效和场景感知的电力不匹配管理。更具吸引力的是,我们的管理方案使昂贵的储能设备更实惠、更经济,适合数据中心规模的使用。我们用一个真实的系统原型来评估 HEB 设计。与同质电池能量缓冲系统相比,HEB 可将能源效率提高 39.7%,将 UPS 使用寿命延长 4.7 倍,将系统停机时间减少 4f%,并将可再生能源利用率提高 8f.2%' 我们的 TCO 分析表明,HEB 具有较高的投资回报率,并且在 8 年内能够获得超过 J.9X 的峰值削减效益。它允许数据中心适应各种电源异常,从而提高运营效率、弹性和经济性。
使用多位逻辑器件时,输入绝不能浮动。在许多情况下,数字逻辑器件的功能或部分功能是未使用的,例如,当仅使用三输入与门的两个输入或仅使用 4 个缓冲门中的 3 个时。此类输入端不应保持未连接状态,因为外部连接处的未定义电压会导致未定义的操作状态。以下指定的规则在任何情况下都必须遵守。数字逻辑器件的所有未使用的输入必须连接到高或低偏置以防止它们浮动。应应用于任何特定未使用输入的逻辑电平取决于器件的功能。通常,它们将绑定到 Gnd 或 Vcc,以更有意义或更方便为准。
NCA8244 是一款八进制缓冲器/驱动器,用于提高面向总线的接收器和发射器、时钟驱动器等的驱动能力,并确保信号时序的准确性。它在每个方向上提供四个通道,具有低电平有效的单独输出使能 (/OE) 输入。当 /OE 有效时,NCA8244 将数据从 A 传输到 Y。当 /OE 为高电平时,输出处于高阻抗状态。在通电和断电期间,/OE 应通过上拉电阻连接到 VCC,以确保高阻抗状态。NCA8244 可承受高达 5.SV 的输入电压,每个通道支持最大 24 mA 的电流驱动。所有未使用的输入必须保持在 Vee 或 GND 以防止过大的电源电流。
介绍了一种用于混合电压的数字双向输入/输出 (I/O) 垫片缓冲器的新电路设计。数字双向 I/O 缓冲器通过将输出阻抗与传输线的 50 欧姆相匹配来避免反射,并通过增加输出阻抗使过冲和下冲低于 300mV。数字双向 I/O 垫片缓冲器提供输入和输出之间的最小延迟以及最小上升和下降时间。所提出的数字双向 I/O 垫片缓冲器是在 Cadence 中使用 TSMC 0.18um CMOS 工艺进行设计、仿真和布局的,线性电阻元件电连接到 I/O 垫片以限制处理的数据 I/O 信号。输出上升时间和下降时间分别为 0.42 ns 和 0.93 ns,负载为 3pF。最终芯片面积仅为 5 um 2
MSB 和 LSB 由范围时钟脉冲计时进入输入缓冲器。输入缓冲器是移位寄存器,每个寄存器能够存储 128 位或一个字。每个缓冲器上的范围时钟计数器计数 128 个范围时钟,然后阻止任何进一步的时钟,直到发生另一个触发脉冲。当 MSB 和 LSB 由范围时钟计时进入一个缓冲器时,先前存储在另一个缓冲器中的信息由 1.9 MHz 内存时钟脉冲计时输出。在下一个触发脉冲上,新信息被计时进入由 1.9 MHz 时钟清空的缓冲器,同时先前填充的缓冲器被计时输出。缓冲器之间的切换操作在每个触发脉冲时重复。
电流型整流器需附加重叠时间,重叠时间会产生重叠电流,造成输入电流畸变。本研究通过对比增加重叠时间前后交流侧电流来说明重叠时间的影响。讨论了三角载波、正向载波、负向载波等不同调制载波下重叠时间引起的重叠电流分布。基于傅里叶分析,建立了交流侧电流多余谐波与重叠时间的定量关系。在换向分析的基础上,提出了一种能抑制重叠电流的新型载波调制方案。搭建了一台3 kW样机,验证了重叠时间影响及所提抑制调制方案的有效性。
摘要 — 现代神经调节系统通常提供大量的记录和刺激通道,这降低了每个通道的可用功率和面积预算。为了在面积限制越来越严格的情况下保持必要的输入参考噪声性能,斩波神经前端通常是首选方式,因为斩波稳定可以同时改善(1/f)噪声和面积消耗。现有技术中,通过基于输入电压缓冲器的阻抗增强器解决了输入阻抗大幅降低的问题。这些缓冲器对大型输入电容器进行预充电,减少从电极吸取的电荷并有效提高输入阻抗。这些缓冲器上的偏移直接转化为电荷转移到电极,这会加速电极老化。为了解决这个问题,提出了一种具有超低时间平均偏移的电压缓冲器,它通过定期重新配置来消除偏移,从而最大限度地减少意外的电荷转移。本文详细介绍了背景和电路设计,并介绍了在 180 nm HV CMOS 工艺中实现的原型的测量结果。测量结果证实,发生了与信号无关的缓冲器偏移引起的电荷转移,并且可以通过所提出的缓冲器重新配置来缓解这种电荷转移,而不会对输入阻抗增强器的操作产生不利影响。所提出的神经记录器前端实现了最先进的性能,面积消耗为 0.036 mm2,输入参考噪声为 1.32 µV rms(1 Hz 至 200 Hz)和 3.36 µV rms(0.2 kHz 至 10 kHz),功耗为 13.7 µW(1.8 V 电源),以及 50 Hz 时的 CMRR 和 PSRR ≥ 83 dB。
集成电路制造的最新技术需要一种通信架构,例如片上网络 (NoC)。NoC 缓冲器易受多单元翻转 (MCU) 的影响。此外,随着技术的缩小,MCU 的概率也会增加。因此,在 NoC 缓冲器中应用纠错码 (ECC) 可能成为解决可靠性问题的一种方法,尽管这会增加设计成本并需要具有更高存储容量的缓冲器。这项工作评估了两种 NoC 缓冲器数据排列模型,这些模型受三种类型的 ECC 保护,可保护存储信息,并与其他解决方案相比减少面积使用和功耗。我们通过将模型应用于三种类型的 ECC 并测量缓冲区面积、功率开销和错误覆盖率来评估容错 NoC 缓冲区方案的性能。实验结果表明,使用优化模型可保持 MCU 的可靠性,同时分别减少约 25% 和 30% 的面积消耗和功耗。
摘要 — 由电池和超级电容器 (SC) 组成的多个混合储能系统 (HESS) 被广泛用于直流微电网以补偿功率失配。根据其特定的能量和功率特性,电池和超级电容器分别用于补偿低频和高频功率失配。本文提出了一种借助新型功率缓冲器动态形成多个 HESS 的分散功率分配策略。功率缓冲器是一种结合电容器和双向 DC-DC 转换器的设备,它用作电池和直流母线之间的接口,可轻松实现不同储能单元的即插即用以及有效、高效的功率分配。首先,功率缓冲器和超级电容器通过改进的 IV 下垂控制将功率失配分为低频和高频部分。然后,功率缓冲器根据电池各自的充电状态 (SoC) 将低频失配转移到电池进行补偿,而高频部分则由超级电容器直接处理。该新方案进一步消除了直流母线电压偏差。最后,三个案例研究的实时硬件在环 (HIL) 测试证实了所提出的控制策略的有效性。