媒体流媒体缓存并使用以下HTTP蒸汽协议为媒体播放器提供支持的网络内容,软件和流媒体:Apple HTTP Live流媒体(HLS),Microsoft HTTP Smooth Streaming(HSS),Adobe HTTP HTTP HTTP HTTP Dynaming(HDS)和MPEG DynamiC DynamiC Dynamic Addaptive Adpastive越过HTTP(HTTP)。媒体流媒体支持视频按需(VOD),实时视频,时移电视(TSTV),渐进下载,安全下载和从普通高性能HTTP缓存中的小对象缓存。媒体流媒体根据客户端位置,缓存可用性,缓存负载和所请求的内容执行用于缓存选择的复杂算法。
I。代表性的示例包括Alpha 21264锦标赛预测器[11],偏斜分支预测因子,例如2BC-GSKEW分支预测器,该预测已计划为Alpha EV8前端[15]。驱动多组分预测指标的主要动机是观察[10],即不同的动态预测因子在预测准确性方面与不同分支的不同,因此需要使用多个预测指标来预测分支。多组分预测因子已经在文献中进行了广泛的研究,并具有多种设计策略,试图提高预测准确性和功率[2],[5]。典型且广泛流行的多组分预测指标由本地和全局预测指标组成,并使用复杂的比赛预测方案来选择运行时这些预测变量之间的最终预测。基于本地历史的预测指标仅使用有关其当前预测所考虑的分支的过去结果信息,而全球人除了目前外,还考虑了前面分支的结果历史,同时对特定分支进行了预测。本地和全局组件保持单独的模式
●精心策划和安排了成千上万个已有的容器,以启用交互式调试会话(Kubernetes,aws,typeScript)。●设计并实施了Chromium浏览器过程内存快照的创建和缓存,将调试会话启动性能提高了10次以上(Typescript,Node.js,S3,Postgres)。●优化了通过Websocket进行大量数据传输处理高量数据传输的优化,可实现后端服务延迟的30%(Typescript,Node.js,Avro,Postgres)。●对分布式系统(Typescript,Node.js,Postgres,s3)进行了数千pb的存储,检索和元数据管理。●使用高级可观察性工具开发了全面的诊断系统;增强了对应用程序性能指标的实时可见性,将事件分辨率的分辨率从小时减少到几分钟(OpentElemetry,Honeycomb.io,Datadog,Sentry)。●设计并实现了一个协议缓存层,该缓存层将开始时间从10分钟降低到只有5秒钟(ZOD,Postgres,S3,Typescript,Node.js)。
摘要:癌症恶病质对结肠微生物群的影响的特征很差。这项研究评估了如果发现类似的营养不良,则评估了两种缓存产生的肿瘤类型对肠道菌群的影响,以确定肠道菌群的影响。此外,还确定了含有富含免疫营养素的食物(核桃)的饮食是否已知可以促进结肠中益生菌的生长,这会改变营养不良和缓慢的卡希克西亚。男性Fisher 344只大鼠被随机分配给有或没有核桃的半纯化饮食。然后,在每个饮食组中,将大鼠随机分配到一个治疗组:肿瘤的特征喂养(TB),非肿瘤含量的Adibitum Fed(NTB-AL)和非肿瘤组对TB(NTB-PF)(NTB-PF)。TB组植入了病房结肠癌或MCA诱导的肉瘤,都是可移植的肿瘤系。粪便样品,并使用16S rRNA基因分析鉴定了细菌。两个结核病组都患有恶病质,但肠道微生物组的变化也有所不同。β多样性不受治疗(NTB-AL,TB和NTB-PF)的影响,无论肿瘤类型如何,但受饮食影响。此外,饮食始终改变了几种细菌类群的相对丰度,而治疗和肿瘤类型没有。对照饮食增加了曲霉曲霉的丰度,而核桃饮食则增加了Ruminococcus属。没有发现病虫的常见粪便细菌变化特征。饮食始终改变了肠道菌群,但是这些变化不足以减慢恶病质的进展,这表明癌症恶病质比几个肠道菌群变化更为复杂。
此类任务同样可以先离线学习状态转移预测模 型再使用 MPC 计算控制输入 [28-29] ,或直接使用强 化学习方法 [68-69] ,但需要大量训练数据且泛化性较 差。在准静态的局部形变控制中,更常用的方法是 在线估计局部线性模型。该模型假设线状柔性体形 状变化速度与机器人末端运动速度在局部由一个雅 可比矩阵 JJJ 线性地联系起来,即 ˙ xxx ( t ) = JJJ ( t ) ˙ rrr ( t ) ,其 中 ˙ xxx 为柔性体形变速度, ˙ rrr 为机器人末端运动速度。 由于使用高频率的闭环反馈来补偿模型误差,因此 完成任务不需要非常精确的雅可比矩阵。 Berenson 等 [70-71] 提出了刚度衰减( diminishing rigidity )的概 念,即离抓取点越远的位置与抓取点之间呈现越弱 的刚性关系,并据此给出了雅可比矩阵的近似数学 表示。此外,常用的方法是根据实时操作数据在线 估计雅可比矩阵,即基于少量实际操作中实时收集 的局部运动数据 ˙ xxx 和 ˙ rrr ,使用 Broyden 更新规则 [72] 、 梯度下降法 [73] 、(加权)最小二乘法 [33-34,74] 或卡尔 曼滤波 [75] 等方法在线地对雅可比矩阵进行估计。 该模型的线性形式给在线估计提供了便利。然而, 雅可比矩阵的值与柔性体形状相关,因此在操作 过程中具有时变性,这使得在线更新结果具有滞 后性,即利用过往数据更新雅可比矩阵后,柔性体 已经移动至新的形状,而新形状对应的雅可比矩阵 与过往数据可能并不一致。同时,完整估计雅可比 矩阵的全部元素需要机器人在所有自由度上的运 动数据,这在实际操作过程中难以实现,为此一些 工作提出根据数据的奇异值进行选择性更新或加 权更新 [74] 。此外,此类方法需要雅可比矩阵的初 值,一般在操作前控制机器人沿所有自由度依次运 动,收集数据估计初始位置的雅可比矩阵。受上述 问题影响,在线估计方法往往仅适用于局部小形变 的定点控制,难以用于长距离大形变的轨迹跟踪。 Yu 等 [31] 提出 ˙ xxx = JJJ ( xxx , rrr ) ˙ rrr 的模型形式,其中 JJJ ( · ) 为 当前状态至雅可比矩阵的非线性映射,待估计参数 为时不变形式。基于该模型,该方法将离线学习与 在线更新无缝结合,实现了稳定、平滑的大变形控 制。 Yang 等 [76-77] 使用模态分析方法建立柔性体模
摘要 - 边缘缓存是一项有前途的技术,可以减轻互联网(IOV)的互联网(IOV)的内容访问延迟。它通过中间路边单元预先使用靠近车辆的物品预先使用。先前的边缘缓存工作通常认为内容受欢迎程度是事先知道的,或者遵守简化的模型。然而,这种假设是不现实的,因为内容受欢迎程度随着IOV的空间交通需求不确定而变化。联合学习(FL)使车辆能够通过分布式培训预测流行内容。它保留了培训数据仍然是本地的,从而解决了隐私问题和通信资源短期。本文通过利用异步FL和深钢筋学习(DRL)来调查流动性吸引的边缘缓存策略。我们首先实施了一个新型异步FL框架,以用于本地更新和堆叠自动编码器(SAE)型号的全局聚合。然后,利用训练有素的SAE模型提取的潜在特征,我们采用了混合过滤模型来预测和推荐流行内容。fur-hoverore,我们在内容预测后探索智能缓存决策。基于公式的马尔可夫决策过程(MDP)问题,我们提出了一个基于DRL的解决方案,并采用基于神经网络的参数近似RL中的维度诅咒。广泛的模拟是根据现实世界数据轨迹进行的。尤其是,我们提出的方法的表现优于FedAvg,LRU和NODRL,当高速缓存能力达到350 MB时,边缘命中率分别提高了大约6%,21%和15%。
在许多应用程序中,我们需要生成一个序列长度比原始视频模型支持的长度更长的视频。为了实现这一目标,我们首先将长视频分为长度L的重叠块,在连续的块之间具有一个框架重叠,并以自动回归方式顺序生成每个块的框架。具体来说,对于第一个块,我们遵循Sec中描述的推理管道。主纸的4.5预测RGB视频。 然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。 要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。 具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。 我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。 我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。 然后将优化目标定义为:主纸的4.5预测RGB视频。然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。然后将优化目标定义为:
备注:驱逐设置算法是实现更强大的缓存正时攻击的关键1.last级高速缓存侧渠道攻击是实用的,刘,奥克兰,2015年,2015年2。加密地址缓存的新攻击和防御寻找驱逐集的理论和实践,奥克兰Vila,2019年4。对基于随机的保护缓存架构的系统分析。Purnal等。al。2021 5。最后一级的缓存侧通道攻击在现代公共云中是可行的,
培训人工智能(AI)系统需要大量数据,AI开发人员面临访问所需信息的各种障碍。合成数据已将研究人员和行业的想象力作为解决这个问题的潜在解决方案。虽然可能需要对合成数据的某些热情,但在这篇简短的论文中,我们为简单叙事提供了至关重要的配重,这些叙述将合成数据定位为对每个数据访问挑战的一种无需成本的解决方案,突显了伦理,政治,政治和治理性,可以创建合成数据的使用。我们质疑合成数据本质上可以免于隐私和相关的道德问题的想法。我们警告说,将二元反对的构架数据构架对“真实”测量数据可能会巧妙地将数据收集器和处理器持有的规范标准转移。我们认为,通过承诺将数据与其组成部分(其代表和影响的人)离婚,合成数据可能会给民主数据治理带来新的障碍。
摘要 在我们的社会中,对生产和使用更多数据的需求日益增长。数据正在达到推动每个行业部门的所有社会和经济活动的程度。技术不再是障碍;然而,在技术大规模部署的地方,数据的生产会产生对更好的数据驱动服务日益增长的需求,同时,数据生产的好处在很大程度上推动了全球数据经济的发展,数据已成为企业最有价值的资产。为了充分发挥其价值并帮助数据驱动型组织获得竞争优势,我们需要有效和可靠的生态系统来支持跨境数据流动。为此,数据生态系统是组织内或跨组织数据共享和重用的关键推动因素。数据生态系统需要应对数据管理的各种基本挑战,包括技术和非技术方面(例如法律和道德问题)。本章探讨了大数据价值生态系统,并详细概述了几种数据平台实现,作为共享和交易工业和个人数据的尽力而为的方法。我们还介绍了实现数据平台的几种关键支持技术。本章最后介绍了数据平台项目遇到的常见挑战,并详细介绍了应对这些挑战的最佳实践。