许多工作流系统跨越多个科学领域和环境,对于物联网 (IoT),Node-RED 提供了一个有吸引力的基于 Web 的用户界面来执行基于 IoT 服务的工作流。但是,与大多数工作流系统一样,它集中协调工作流,无法在节点移动的更短暂的环境中运行。为了解决这一差距,我们展示了如何将 Node-RED 工作流迁移到分散的执行环境中以在移动自组织网络上运行,并且我们通过将基于 Node-RED 的交通拥堵检测工作流转换为在分散环境中运行来演示这一点。该方法使用向量符号架构 (VSA) 将 Node-Red 应用程序动态转换为紧凑的语义向量表示,该表示对服务接口及其嵌入的工作流进行编码。通过扩展现有的服务接口,使用可以解释和交换向量的简单认知层,我们展示了如何以完全分散的方式动态发现所需的服务并将其互连到所需的工作流中。由此产生的系统提供了一个方便的环境,其中可以使用 Node-RED 前端图形组合工具来协调分散的工作流。在本文中,我们进一步扩展了这项工作,引入了一种新的动态 VSA 向量压缩方案,该方案可压缩用于在线通信的向量,从而减少通信带宽,同时保持语义信息内容。该算法利用符号向量的全息特性进行压缩,同时考虑组合向量的数量以及确定与同一上下文中使用的其他编码向量冲突的相似性界限。由此产生的节省使这种方法对于基于服务的分散式工作流中的发现极为有效。© 2020 由 Elsevier BV 出版
舞蹈机器人领域吸引了众多领域的关注。例如,索尼推出了一款名为 QRIO 的人形机器人(Geppert 2004),它可以通过模仿人类的舞蹈以高度协调的方式与多个单元一起跳舞。Nakaoka 等人探索了一种动作捕捉系统来教机器人 HRP-2 跳日本传统民间舞蹈(Nakaoka 等人 2005)。尽管之前的系统取得了成功,但它们通常要么局限于一组预先定义的动作(伴随着音乐),要么根据外部刺激表现出很小的变化。为了提高舞蹈的变化性,Bi 等人提出让有腿的机器人以多样化的方式与音乐同步跳舞(Bi 等人 2018)。他们根据音乐的节拍从舞蹈动作库中挑选动作,创作了一种舞蹈编排。舞蹈动作包括各种踏步和基本动作。从库中挑选动作的过程由马尔可夫链定义,它取决于先前挑选的舞蹈动作和当前音乐节奏。在那些基于概率图模型的方法中,由于概率模型在表示舞蹈动作之间的逻辑关系方面的局限性,通常会选择与先前动作不合理的动作。在本演示中,我们设计了一个名为 Plan2Dance 的系统,以基于音乐创作舞蹈编排。通过考虑动作的时间要求,基于基本舞蹈动作的关系构建了一组动作模型(以 PDDL(Fox and Long 2003)语言的形式)。
那么,如何解释这些来自新兴市场的后起之秀能够在如此短的时间内占据全球领导地位呢?为什么现有参与者要将市场份额拱手让给来自中国、印度和拉丁美洲等发展中地区的竞争对手?我们认为,许多现有企业的问题在于,他们的管理者一直在问错误的问题。在北美、日本和欧洲,管理者仍然在思考如何优化他们既定的商业模式。这个问题假设只有一种最佳竞争方式 — — 通常体现在价值链的概念中。它导致高管们询问其他竞争对手在做什么,然后相互比较,盲目模仿最成功的竞争对手。它导致他们询问现有客户是否对现有的产品感到满意。它导致他们询问质量管理计划 — — 比如六西格玛或全面质量管理 — — 如何能从既定模式中榨取增量改进。所有这些问题都导致公司相互模仿,趋同于同质的商业模式,为客户提供更多相同的产品。就像结婚多年的夫妻一样,竞争对手在每一次更迭中变得越来越相似。